
Chapter 4
Component Windows Objects
(The Component Object Model)

Arthur: Camelot!
Galahad: Camelot...
Launcelot: Camelot...
Gawain: It's only a model...
Arthur: Sh!

From "Monty Python and the Holy Grail"1

Just about everyone who has ever tried to present all the material in OLE 2.0 in a
comprehensible way (myself included) has tried to bring out the Component Object Model as

some "feature" of OLE 2.0. Because "The Component Object Model" itself basically confuses
people, this chapter is about using and implementing very general Windows Objects that involve

the base APIs and interfaces specified in the Component Object Model.

The Component Object Model is part specification and part implementation. The specification is mostly
about interfaces, reference counting, and QueryInterface, that is, the basic standardization of a Windows
Object. The implementation is a number of fundamental APIs that provide for object creation and code
management as well as code that handles marshaling of interface function calls across process boundaries. I
refer to this implementation, contained in COMPOBJ.DLL, as the "component object library."

This implementation provides one answer to the ultimate question posed in Chapter 3 in the form of a
"Component Object." A component object is a Windows Object identified with a CLSID that exists in any
DLL or EXE on your file system.2 To obtain a pointer to a component object the object's user passes that
CLSID to one of two component object library APIs. The library in turn locates and loads the code
implementing that object, instantiates the object, and asks the object for an interface pointer to return to the
object's user. Note that a compound document object are just special cases of the more general component
object, so the discussion here is relevant if you are interested in implementing a compound document server.

Before diving into using and implementing Component Objects, we must first discuss a few requirements
of all applications (EXEs) that either use or implement objects. Applications (which define a task) must
initialize the component object library before using any other OLE 2.0 APIs (from any OLE 2.0 DLL) and
part of this initialization has to do with memory management within the application's task. Since both
operations are crucial and used in all remaining sample applications in this book initialization and memory
management will be the first two topics of this chapter.

The user of a Component Object, which we can call a Component User, then only uses the library to
obtain that first pointer to an object identified with a class ID. The overall impact on such a component user
is minimal as this chapter will demonstrate–the user need not be concerned about where the code for the
object is actually located or how the object is implemented. The greater impact is on the implementation of a
Component Object that allows the library to locate, load, and instantiate it based on a class ID. To
accommodate such a capability you must implement a standard structure around the object, one structure for
EXEs, another structure for DLLs. In addition, you must store information in the registration database under
your object's class ID that identifies the name of your object and where it lives. The component object library
APIs use this information to find you and get you connected to your object user.

This chapter will demonstrate a simple object implemented in both a DLL and EXE as well as a user of
those objects. We will also implement Schmoo's Polyline object as a Component Object in a DLL that we'll
take forward in following chapters as we add more OLE 2.0 features.

This chapter closes with a discussion about object reusability through a mechanism called aggregation.
One object, called the aggregate, internally creates instances of other objects, possibly exposing the interfaces
of those objects as an interface on the aggregate. Aggregation accomplishes code reuse like C++ inheritance
but without the problems of inheritance. While the topic is appropriate to discuss here, we won't actually put
it to use until later chapters. You may, however, find it a useful mechanism around which to architect code
reuse in your own application.

So to explain what the Component Object Model is, we really want to analyze the model's impact on

1Copyright 1974, Python (Monty) Pictures, Ltd., 20 Fitzroy Square, London, W.1.
2Again, in the future when OLE 2.0 becomes network enabled these may live and execute on a different machine.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT

Page 2 :

applications in general, on the user of a component object, and on the implementation of a component object.
The specifications of the Component Object Model provide the foundation of how Windows will evolve from
an API-based system to an object-oriented system, a very romantic walk through the lush gardens of Camelot.
But that could be another whole topic in itself, so we'll stick to implementation details; it is, after all, only a
model.

Where the Wild Things Are
There are component users and component objects, both of which can reside in any piece of code, EXE or
DLL alike. The system features provided in OLE 2.0 are themselves both objects and users, all of which live
in DLLs. The implementation portion of the component object library is considered part of the OLE 2.0
system features.

Whether an object user lives in an EXE or DLL is of little importance–EXEs have a little more work as
described in the next section since they define a task. In any case, disregarding where an object user lives we
can illustrate the relationship between object and user as shown in Figure 4-1. Note that the word "server" in
this figure applies to the module that services an object, either a DLL or EXE.

Figure 4-1: Component Users (in DLLs or EXEs) see other Component Objects either in DLLs or
other EXEs. The component object libraries live between the user and an EXE object to provide
marshaling. There is no middleman between the user an a DLL object.

Because an EXE object requires marshaling, performance is typically slower than using a DLL object.
However, a 16-bit DLL object cannot currently be loaded into a 32-bit user space, nor can a 32-bit DLL be
loaded into a 16-bit user space. Herein lies the advantage to EXE objects in that the marshaling layer takes
care of the 16-32 bit thunking.

The component object library is the agent responsible for getting at the first object in any series of
communication between object and user. It worries making sure the right piece of object code is in memory
whenever something else wants to use that object. However, once the initial object has been created and is
handed to the user, the object and user may create other objects themselves and pass them to their partner–the
component object library is only there for marshaling (if even necessary) and is otherwise out of the picture.
The objects we implement in this chapter require a certain structure and registration such that any user can
instantiate that object through the component object library APIs. Since these APIs are used underneath
many of the compound document APIs (prefixed with Ole, such as OleCreate) all compound document
objects are also objects that fit this model–they just have a more defined behavior. However, the component
object library is highly useful for creating component software, and Windows itself is headed in this direction,
not to be a compound document system, but to be a component object system.

Compound Document Terminology
A number of the terms generally used in discussions of compound documents will be used in this
chapter to discuss much more generic concepts. Therefore the list below provides the crucial
compound document terms and how they apply to the information in this chapter:
Container A container is a user of compound document objects which

are special cases of component objects. A container exposes
site objects to the linked or embedded objects they contain,
but those site objects are not separately addressable
components and are only passed to the contained object at
run-time.

Server (sometimes just 'Object') A server is an implementor of an object, either a DLL or
EXE. A server may implement a component object or a
compound document object and expose both through
identical structures usable by the component object model.
Servers may use any other component object to implement
themselves.

In-Proc Server or DLL Server A server of objects specifically implemented in a DLL.
Server Application or EXE Server A server of objects specifically implemented in an EXE.
Object Handler A lightweight DLL server containing a partial

implementation of an object in an EXE. Handlers are not

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 3

expected to implement full objects (especially not editing
capabilities) and are intended for redistribution. Structurally
they are identical to DLL servers.

The New Application for Windows Objects
Any and all applications that plan to use or implement Windows Objects must insure that the component
object library is properly initialized before attempting to use other OLE 2.0 APIs. In addition, applications
that intend to use objects implemented in other applications must also make special considerations for LRPC's
use of PostMessage. Note that any object or object user in a DLL need not be concerned with any of these
requirements since they are only necessary from the application that defines a task:
1. Call the Windows API SetMessageQueue(96) to set your application's message queue size to 96.
This is the recommended size for LRPC handling.
2. Verify the library build version by calling CoBuildVersion or OleBuildVersion.
3. Call CoInitialize or OleInitialize on startup.
4. Call CoUninitialze or OleUninitialize when shutting down to free DLL objects.

NOTE: CoBuildVersion, CoInitialize, and CoUninitialize have counterparts with Ole prefixes:
OleBuildVersion, OleInitialize, and OleUnintialize. The Co* functions control your access to
component object model functions. If you use any data transfer, drag-drop, or compound document
related APIs functions, you must use the Ole* functions listed above instead of their Co*
counterparts. The Ole* versions simply perform a few specific operations and call the Co* versions.
OLE 2.0 applications, containers included, always use the Ole* versions.
Absolutely all of the sample applications in this book that compile EXEs include these four steps.
Most of the samples in this chapter as well as Chapters 5 and 6 use the Co* variants. All samples in
Chapters 7 and beyond will use the Ole* functions as those samples will depend on other Ole*
functions as well. The first sample in the next section, "Memory Management and Allocator
Objects," will demonstrate each of these steps. In the meantime, let's look at each step in detail and
why they are necessary.

Enlarge the Message Queue
OLE 2.0's Lightweight Remote Procedure Call implementation works on top of the Windows API
PostMessage. In a nutshell, when the user of an object in another application calls one of the object's member
functions, it generates an 'LRPC call' which in actuality is a PostMessage from the one application process
space into the other. In order to handle all the possible PostMessage traffic, Microsoft recommends that all
OLE 2.0 applications that have even the slightest chance of engaging in LRPC calls call SetMessageQueue
with 96 on startup. This should, in fact, be your very first call inside WinMain to insure that no messages yet
exist in your queue since SetMessageQueue will destroy anything there already:

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)
 {
 [variables, but NO code]

 //Recommended for all OLE 2.0 applications.
 SetMessageQueue(96);

 [Initialization code, message loop, etc]

 }

Failure to enlarge your message queue sufficiently could cause the component object library to fail or reject
some LRPC calls. Internally the library attempts to queue up pending LRPC calls if the target application is
slow to respond, but it works better for those calls to be stored in your message queue instead.
Verify The Library Build Version
Before using any other Component Object API (Co*) an application should call CoBuildVersion(void) to get
major and minor build numbers in a returned DWORD. If you are planning to go on to use OLE 2.0's data
transfer or compound document features you must call OleBuildVersion(void) instead which returns a
similar DWORD. The high-order word of the return value is the major version number and the low-order
word is the minor version number.

The application can run one major version and any minor version. The version of your libraries to check
against are defined as the symbols rmm (major) and rup (minor) in OLE2VER.H. Note that these version

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 4 :

numbers will not be 2 and 0 for OLE 2.0 because they are build numbers and not product release numbers.
The application must check for equality on the major version only and fail loading if the expected and actual
values differ. In addition, OLE2VER.H defines a symbol "rmj" which looks like what should be the major
build number, but in fact this is not used. The slightly confusing names of rmm and rup for major and minor
are unfortunate, but we have to deal with them nonetheless:

#include <compobj.h> //For Ole* functions, use OLE2.H
#include <ole2ver.h>

...

DWORD dwVer;

dwVer=CoBuildVersion(); //Or OleBuildVersion

if (rmm==HIWORD(dwVer))
 {
 //Major versions match.

 if (rup <= LOWORD(dwVer))
 {
 //Library is newer or as old as me, use normally.
 }
 else
 {
 /*
 * I was written for newer libraries: disable features that depend
 * on APIs or bug fixes in newer libraries, or simply fail altogether.
 */
 }
 }
else
 //Major version mismatch, fail loading application.

Minor version numbers are useful to applications that want to know if the libraries they've loaded contain a
particular function or have a specific bug fix. Let's say the minor version 12 of OLE 2.0 added a function that
improves our performance over minor version 11. If I load the minor version 11 libraries, I cannot attempt to
call that functions. If, however, I find that I am running against minor version 12, I can take advantage of
what's available.
Call CoInitialize or OleInitialize
On startup an application must call CoInitialize or OleInitialize before calling any other function in their
respective libraries. OleInitialize must be used for any feature above compound files, that is, any data
transfer (including drag-drop) and any compound document functionality. component object library and
compound file APIs can be used after only CoInitialize.

if (FAILED(CoInitialize(NULL))) //Or OleInitialize
 //Fail loading the application

m_fInitialized=TRUE;

Both functions identically take a pointer to an allocator object that supports the IMalloc interface. Through
this object all other parts of this application and DLLs that live in this application's task can allocate task
memory (as opposed to shared memory). If NULL is passed as shown above then OLE uses a default
allocator. Any code in this application or in a DLL loaded into this task may call the CoGetMalloc API to
retrieve an IMalloc pointer to this same allocator. We'll see this in more detail in the next section below
called "Memory Management and Allocator Objects."

Any code within the same task can call CoInitialize multiple times; in such circumstances the IMalloc
passed to the first CoInitialize wins. This allows any code (usually that in a DLL) to insure that it can use the
component object model library whether or not the main application called it. When CoInitialize is called
more than once in the same task, it will return an HRESULT with S_FALSE–a code that does not mean
failure but means 'nothing happened.' As we have seen, the FAILED() macro will return FALSE for
S_FALSE just as it will for S_OK, so the code fragment above is valid for all uses of CoInitialize.

An application must remember whether or not CoInitialize or OleInitialize worked so it knows whether or
not to call CoUninitialize or OleUninitialize when it shuts down. In other words, every Uninitialize call must
be matched one-to-one with and Initialize call.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 5

Call CoUninitialize or OleUninitialize
When an application is done with the libraries it must call CoUninitialize if it had previously called
CoInitialize, or OleUninitialize if it has previously called OleInitialize. Neither function takes any
parameters. You should remember whether or not the Initialize call succeeded and only call Uninitialize if
so, that is, balance the calls as you would GlobalAlloc and GlobalFree.

Internally, OleUnintialize cleans up the specifics from OleInitialize and calls CoUninitialize. This latter
function will call another CoFreeAllLibraries which forcibly unloads all object DLLs that were loaded on
behalf of the application, regardless of reference or lock counts. You may have use for this function yourself
if your application's debugging version has the ability to suddenly terminate and unload (say on an assert
failure) which might not normally call CoUninitialize.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 6 :

Memory Management and Allocator Objects
Up to now, the only system-supported memory management functions have been the various Local* and
Global* Windows APIs (LocalAlloc, LocalFree, GlobalAlloc, GlobalFree, etc.). OLE 2.0 introduces a new
object-oriented technique to deal with memory management through use of an allocator objects. Within any
given task, that is, a process space in which is running a single EXE, there is a task allocator object and a
shared allocator object. The application may implement the task allocator, or it may use the default task
allocator implemented in the component object library. The shared allocator is not replacable-the
implementation in the component object library is always used to insure that memory is truly sharable.

So how do you specify the task allocator? The answer is the only parameter to the CoInitialize and
OleInitialize functions. Both take a pointer to an allocator object that defines how memory is managed
within the task where a NULL means "use the default task allocator" and a non-NULL pointer points to
application implementation of a task allocator. Since only applications call the Initialize functions, the
application defines task allocations.

An allocator object implements the IMalloc interface, defined in COMPOBJ.H (IUnknown members
have been removed for brevity; you will see them explicitly in the include file), so CoGetMalloc always
provides an LPMALLOC pointer (far pointer to IMalloc) as an out-parameter. The IMalloc interface
describes most of the same functions that Windows provides for local and global memory, such as
LocalAlloc, LocalFree, and LocalCompact. For specific details for each member function, see the OLE 2.0
Programmer's Reference, but it's fairly obvious to guess at how to use each function in this interface on their
signatures alone:

DECLARE_INTERFACE_(IMalloc, IUnknown)
 {
 STDMETHOD_(void FAR*, Alloc) (THIS_ ULONG cb) PURE;
 STDMETHOD_(void FAR*, Realloc) (THIS_ void FAR* pv, ULONG cb) PURE;
 STDMETHOD_(void, Free) (THIS_ void FAR* pv) PURE;
 STDMETHOD_(ULONG, GetSize) (THIS_ void FAR* pv) PURE;
 STDMETHOD_(int, DidAlloc) (THIS_ void FAR* pv) PURE;
 STDMETHOD_(void, HeapMinimize) (THIS) PURE;
 };

typedef IMalloc FAR* LPMALLOC;

At any time any piece of code in the application or any DLL loaded into this task (including the OLE 2.0
libraries) can and will call CoGetMalloc to obtain an IMalloc pointer on the task allocator object, that is, a
task allocator is a Windows Object and you use the API CoGetMalloc to obtain the first interface pointer. In
this case, your application may be the object implementor and OLE 2.0 may be the object user. It works both
ways!

All the OLE 2.0 libraries always use the task allocator for all non-shared memory needs. Some OLE 2.0
functions, like StringFromCLSID (in COMPOBJ.DLL), return a pointer to the caller that was allocated from
this task memory. The caller must free that pointer when it's no longer necessary using the allocator object
from CoGetMalloc.

The only parameter to CoGetMalloc is either MEMCTX_TASK or MEMCTX_SHARED to identify
which allocator object you want. Again, the task allocator is always determined by your application's call to
Co/OleInitialize whereas OLE 2.0 always provides the shared allocator.

The default task allocator is based on multiple-local heap management (or far local heaps). This
allocator allows you to allocate more than 64K–since there are multiple heaps–but each allocation is as
efficient as a local allocation since you only use one selector per heap instead of one per allocation (as
GlobalAlloc). The only limitation is that any single allocation must be smaller than 64K. The shared
allocator provides memory that different processes can independently access, such as global memory provides
under Windows 3.1, but uses the same efficiency of multiple local heaps.

The Malloc program (CHAP04\MALLOC) shown in Listing 4-1 exercises the functions in both the
standard task allocator (it does not implement its own allocator) and the shared allocator. It is an application
that is most interesting in a debugger but does indicate success or failure of its operations in message boxes
(yes, a most advanced user interface!).

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 7

MALLOC.CPP

/*
 * MALLOC.CPP
 *
 * Demostration of IMalloc object use.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#include <windows.h>
#include <ole2.h>
#include <initguid.h>
#include <ole2ver.h>
#include "malloc.h"

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)
 {
 MSG msg;
 LPAPPVARS pAV;

 //Recommended for all OLE 2.0 applications.
 SetMessageQueue(96);

 //Create and initialize the application.
 pAV=new CAppVars(hInst, hInstPrev, nCmdShow);

 if (NULL==pAV)
 return -1;

 if (pAV->FInit())
 {
 while (GetMessage(&msg, NULL, 0,0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 delete pAV;
 return msg.wParam;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 8 :

LRESULT FAR PASCAL __export MallocWndProc(HWND hWnd, UINT iMsg
 , WPARAM wParam, LPARAM lParam)
 {
 LPAPPVARS pAV;
 LPVOID pv;
 ULONG cb;
 UINT i;
 BOOL fResult=TRUE;
 HRESULT hr;

 //This will be valid for all messages except WM_NCCREATE
 pAV=(LPAPPVARS)GetWindowLong(hWnd, MALLOCWL_STRUCTURE);

 switch (iMsg)
 {
 case WM_NCCREATE:
 //CreateWindow passed pAV to us.
 pAV=(LPAPPVARS)((LONG)((LPCREATESTRUCT)lParam)->lpCreateParams);

 SetWindowLong(hWnd, MALLOCWL_STRUCTURE, (LONG)pAV);
 return (DefWindowProc(hWnd, iMsg, wParam, lParam));

 case WM_DESTROY:
 PostQuitMessage(0);

Listing 4-1: The MALLOC program that exercises task and shared allocator objects.

 break;

 case WM_COMMAND:
 switch (LOWORD(wParam))
 {
 case IDM_IMALLOCCOGETMALLOCTASK:
 pAV->FreeAllocations(TRUE);

 hr=CoGetMalloc(MEMCTX_TASK, &pAV->m_pIMalloc);
 fResult=SUCCEEDED(hr);

 MessageBox(hWnd, ((fResult) ? "CoGetMalloc(task) succeeded."
 : "CoGetMalloc(task) failed."), "Malloc", MB_OK);

 break;

 case IDM_IMALLOCCOGETMALLOCSHARED:
 pAV->FreeAllocations(TRUE);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 9

 hr=CoGetMalloc(MEMCTX_SHARED, &pAV->m_pIMalloc);
 fResult=SUCCEEDED(hr);

 MessageBox(hWnd, ((fResult) ? "CoGetMalloc(shared) succeeded."
 : "CoGetMalloc(shared) failed."), "Malloc", MB_OK);
 break;

 case IDM_IMALLOCRELEASE:
 pAV->FreeAllocations(TRUE);
 break;

 case IDM_IMALLOCALLOC:
 if (NULL==pAV->m_pIMalloc)
 break;

 pAV->FreeAllocations(FALSE);

 for (i=0; i < CALLOCS; i++)
 {
 LPBYTE pb;
 ULONG iByte;

 cb=pAV->m_rgcb[i];
 pAV->m_rgpv[i]=pAV->m_pIMalloc->Alloc(cb);

 //Fill the memory with letters.
 pb=(LPBYTE)pAV->m_rgpv[i];

 if (NULL!=pb)
 {
 for (iByte=0; iByte < cb; iByte++)
 *pb++=('a'+i);
 }

 fResult &= (NULL!=pAV->m_rgpv[i]);
 }

 MessageBox(hWnd, ((fResult) ? "IMalloc::Alloc succeeded."
 : "IMalloc::Alloc failed."), "Malloc", MB_OK);
 break;

 case IDM_IMALLOCFREE:
 pAV->FreeAllocations(FALSE);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 10 :

 MessageBox(hWnd, "IMalloc::Free finished.", "Malloc", MB_OK);
 break;

 case IDM_IMALLOCREALLOC:
 if (NULL==pAV->m_pIMalloc)
 break;

 for (i=0; i < CALLOCS; i++)
 {
 LPBYTE pb;
 ULONG iByte;

 pAV->m_rgcb[i]+=128;

 //Old memory is not freed is Realloc fails here.
 pv=pAV->m_pIMalloc->Realloc(pAV->m_rgpv[i]
 , pAV->m_rgcb[i]);

 if (NULL!=pv)
 {
 pAV->m_rgpv[i]=pv;

 //Fill the new memory with something we can see.
 pb=(LPBYTE)pAV->m_rgpv[i];
 cb=pAV->m_rgcb[i];

 if (NULL!=pb)
 {
 for (iByte=cb-128; iByte < cb; iByte++)
 *pb++=('a'+i);
 }
 }
 else
 fResult=FALSE;
 }

 MessageBox(hWnd, ((fResult) ? "IMalloc::Realloc succeeded."
 : "IMalloc::Realloc failed."), "Malloc", MB_OK);

 break;

 case IDM_IMALLOCGETSIZE:
 if (NULL==pAV->m_pIMalloc)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 11

 break;

 for (i=0; i < CALLOCS; i++)
 {
 cb=pAV->m_pIMalloc->GetSize(pAV->m_rgpv[i]);

 //We test that the size is *at least* what we wanted.
 fResult &= (pAV->m_rgcb[i] <= cb);
 }

 MessageBox(hWnd, ((fResult) ? "IMalloc::GetSize matched."
 : "IMalloc::GetSize mismatch."), "Malloc", MB_OK);

 break;

 case IDM_IMALLOCDIDALLOC:
 if (NULL==pAV->m_pIMalloc)
 break;

 /*
 * DidAlloc may return -1 if it does not know whether
 * or not it actually allocated something. In that
 * case we just blindly & in a -1 with no affect.
 */
 for (i=0; i < CALLOCS; i++)
 fResult &= pAV->m_pIMalloc->DidAlloc(pAV->m_rgpv[i]);

 MessageBox(hWnd, ((fResult) ? "IMalloc::DidAlloc is TRUE."
 : "IMalloc::DidAlloc is FALSE."), "Malloc", MB_OK);

 break;

 case IDM_IMALLOCHEAPMINIMIZE:
 if (NULL!=pAV->m_pIMalloc)
 pAV->m_pIMalloc->HeapMinimize();

 MessageBox(hWnd, "IMalloc::HeapMinimize finished."
 , "Malloc", MB_OK);

 break;

 case IDM_IMALLOCEXIT:
 PostMessage(hWnd, WM_CLOSE, 0, 0L);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 12 :

 break;
 }
 break;

 default:
 return (DefWindowProc(hWnd, iMsg, wParam, lParam));
 }

 return 0L;
 }

CAppVars::CAppVars(HINSTANCE hInst, HINSTANCE hInstPrev, UINT nCmdShow)
 {
 UINT i;
 ULONG cb;

 m_hInst =hInst;
 m_hInstPrev =hInstPrev;
 m_nCmdShow =nCmdShow;

 m_hWnd =NULL;
 m_pIMalloc =NULL;
 m_fInitialized=FALSE;

 //100 is arbitrary--IMalloc's can handle in allocs from 0 to 65535 bytes
 cb=100;

 for (i=0; i < CALLOCS; i++)
 {
 m_rgcb[i]=cb;
 m_rgpv[i]=NULL;
 cb*=2;
 }

 return;
 }

CAppVars::~CAppVars(void)
 {
 FreeAllocations(TRUE);

 if (m_fInitialized)
 CoUninitialize();

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 13

 return;
 }

BOOL CAppVars::FInit(void)
 {
 WNDCLASS wc;
 DWORD dwVer;

 //Make sure COMPOBJ.DLL is the right version
 dwVer=CoBuildVersion();

 if (rmm!=HIWORD(dwVer))
 return FALSE;

 //Call CoInitialize so we can call other Co* functions
 if (FAILED(CoInitialize(NULL)))
 return FALSE;

 m_fInitialized=TRUE;

 if (!m_hInstPrev)
 {
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = MallocWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = CBWNDEXTRA;
 wc.hInstance = m_hInst;
 wc.hIcon = LoadIcon(m_hInst, "Icon");
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
 wc.lpszClassName = "MALLOC";

 if (!RegisterClass(&wc))
 return FALSE;
 }

 m_hWnd=CreateWindow("MALLOC", "IMalloc Object Demo"
 , WS_OVERLAPPEDWINDOW, 35, 35, 350, 250, NULL, NULL, m_hInst, this);

 if (NULL==m_hWnd)
 return FALSE;

 ShowWindow(m_hWnd, m_nCmdShow);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 14 :

 UpdateWindow(m_hWnd);

 return TRUE;
 }

void CAppVars::FreeAllocations(BOOL fRelease)
 {
 UINT i;

 if (NULL==m_pIMalloc)
 return;

 for (i=0; i < CALLOCS; i++)
 {
 if (NULL!=m_rgpv[i])
 m_pIMalloc->Free(m_rgpv[i]);

 m_rgpv[i]=NULL;
 }

 if (fRelease)
 {
 m_pIMalloc->Release();
 m_pIMalloc=NULL;
 }

 return;
 }

MALLOC.H

/*
 * MALLOC.H
 *
 * Definitions for a demonstration of IMalloc.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#ifndef _MALLOC_H_

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 15

#define _MALLOC_H_

//Menu Resource ID and Commands
#define IDR_MENU 1

#define IDM_IMALLOCCOGETMALLOCTASK 100
#define IDM_IMALLOCCOGETMALLOCSHARED 101
#define IDM_IMALLOCRELEASE 102
#define IDM_IMALLOCALLOC 103
#define IDM_IMALLOCFREE 104
#define IDM_IMALLOCREALLOC 105
#define IDM_IMALLOCGETSIZE 106
#define IDM_IMALLOCDIDALLOC 107
#define IDM_IMALLOCHEAPMINIMIZE 108
#define IDM_IMALLOCEXIT 109

//MALLOC.CPP
LRESULT FAR PASCAL __export MallocWndProc(HWND, UINT, WPARAM,
LPARAM);

#define CALLOCS 10

/*
 * Application-defined classes and types.
 */

class __far CAppVars
 {
 friend LRESULT FAR PASCAL __export MallocWndProc(HWND, UINT, WPARAM,
LPARAM);

 protected:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 UINT m_nCmdShow;

 HWND m_hWnd; //Main window handle
 LPMALLOC m_pIMalloc; //IMalloc interface we have.
 BOOL m_fInitialized; //Did CoInitialize work?

 ULONG m_rgcb[CALLOCS]; //Array of sizes to allocate
 LPVOID m_rgpv[CALLOCS]; //Array of allocated pointers

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 16 :

 public:
 CAppVars(HINSTANCE, HINSTANCE, UINT);
 ~CAppVars(void);
 BOOL FInit(void);

 void FreeAllocations(BOOL);
 };

typedef CAppVars FAR * LPAPPVARS;

#define CBWNDEXTRA sizeof(LONG)
#define MALLOCWL_STRUCTURE 0

#endif //_MALLOC_H_

Using the Heapwalker application in the Windows SDK we can see where OLE 2.0 allocates each type of
memory, task and shared, using its own allocator objects. As shown in Figure 4-2, task memory is allocated
from multiple heaps belonging to the Malloc application task. When this memory is freed, the heaps are not
necessarily freed themselves, but the space inside those heaps are freed, as shown in Figure 4-3.

Figure 4-2: Local Walk on a the heap shows allocated blocks. The blocks are filled with letters to
show their location in a hex dump.

Figure 4-3: Local Walk after freeing the memory shows free space in the heaps. Freed blocks are
filled with 0xCC.

Shared memory is allocated on behalf of COMPOBJ.DLL as shown in Figure 4-4, again using the same
heap management technique as the standard task allocator. Freeing memory generates the same results as
shown in Figure 4-3 for the task allocator.

Figure 4-4: Local Walk on a the heap shows allocated blocks exactly like the task allocator, but
owned by COMPOBJ.DLL instead of the application.

Component Objects from Class IDs: A Component User

Let's suppose I'm an application and I know there exists a Windows Object called "Koala" which is, in fact,
what we'll implement in the next section "Implementing a Component Object and Server." I can identify the
Koala object with the CLSID of "00021102-0000-0000-C000-000000000046" (Whoa! That's a long name
there! Remember that CLSIDs are 128 bits: this string is the hexadecimal representation of those bits). Let's
say I also know that the Koala object supports the interface called IPersist which is a very simple interface
only capable of returning the class ID of its object. Given this knowledge, how do I create a Koala object

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 17

with this class ID and obtain an pointer to its IPersist interface?
This question should ring a harmonic with the ultimate question posed in Chapter 3, so let's look at the

answer. For the benefit of those readers writing component document container applications I want to
mention that the APIs and interface functions we use to instantiate a component object are used within more
complex APIs that we'll see in Chapter 9 to instantiate a compound document object. Again, compound
document objects are more refined and specialized component objects; what we discuss here is simply the
logical equivalent of the C++ new operator. If you are in a hurry to implement a compound document
container, you can skip to the next chapter after finishing this section.

The OBJUSER program in Listing 4-2 implements a component user of the Koala component objects that
we'll implement in the next section. Koalas implement the IPersist interface only, but by virtue of
implementing one interface they also implement IUnknown: IPersist includes all IUnknown member
functions plus one other called GetClassID that returns, what else, the CLSID of the object. IPersist is only
used in OLE 2.0 as a base class for the IPersistStorage, IPersistStream, and IPersistFile interfaces that we'll
see in Chapter 5. My reasons for choosing it here over a more interesting custom interface is that IPersist,
being a standard interface, has built-in marshaling support so we can implement it in a DLL or application
object identically with little extra effort.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 18 :

OBJUSER.CPP

/*
 * OBJUSER.CPP
 *
 * A user of the Koala objects.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#define INITGUIDS
#include <windows.h>
#include <ole2.h>
#include <ole2ver.h>
#include "objuser.h"

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)
 {
 MSG msg;
 LPAPPVARS pAV;

 /*
 * This is necessary to support LRPC when using EXE objects. THe
 * default message queue of 8 is a tad too small for some typical
 * operations.
 */
 SetMessageQueue(96);

 //Create and initialize the application.
 pAV=new CAppVars(hInst, hInstPrev, nCmdShow);

 if (NULL==pAV)
 return -1;

 if (pAV->FInit())
 {
 while (GetMessage(&msg, NULL, 0,0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 19

 }

 delete pAV;
 return msg.wParam;
 }

LRESULT FAR PASCAL __export ObjectUserWndProc(HWND hWnd, UINT iMsg
 , WPARAM wParam, LPARAM lParam)
 {
 HRESULT hr;
 LPAPPVARS pAV;
 CLSID clsID;
 LPCLASSFACTORY pIClassFactory;
 DWORD dwClsCtx;

 //This will be valid for all messages except WM_NCCREATE
 pAV=(LPAPPVARS)GetWindowLong(hWnd, OBJUSERWL_STRUCTURE);

 switch (iMsg)
 {
 case WM_NCCREATE:
 //CreateWindow passed pAV to us.
 pAV=(LPAPPVARS)((LONG)((LPCREATESTRUCT)lParam)->lpCreateParams);

Listing 4-2: The OBJUSER program that uses Koala Objects.

 SetWindowLong(hWnd, OBJUSERWL_STRUCTURE, (LONG)pAV);

 return (DefWindowProc(hWnd, iMsg, wParam, lParam));

 case WM_DESTROY:
 PostQuitMessage(0);
 break;

 case WM_COMMAND:
 switch (LOWORD(wParam))
 {
 case IDM_OBJECTUSEDLL:
 pAV->m_fEXE=FALSE;
 CheckMenuItem(GetMenu(hWnd), IDM_OBJECTUSEDLL, MF_CHECKED);
 CheckMenuItem(GetMenu(hWnd), IDM_OBJECTUSEEXE,
MF_UNCHECKED);
 break;

 case IDM_OBJECTUSEEXE:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 20 :

 pAV->m_fEXE=TRUE;
 CheckMenuItem(GetMenu(hWnd), IDM_OBJECTUSEDLL,
MF_UNCHECKED);
 CheckMenuItem(GetMenu(hWnd), IDM_OBJECTUSEEXE, MF_CHECKED);
 break;

 case IDM_OBJECTCREATECOGCO:
 if (NULL!=pAV->m_pIPersist)
 {
 pAV->m_pIPersist->Release();
 CoFreeUnusedLibraries();
 }

 dwClsCtx=(pAV->m_fEXE) ? CLSCTX_LOCAL_SERVER :
 CLSCTX_INPROC_SERVER;

 hr=CoGetClassObject(CLSID_Koala, dwClsCtx, NULL
 , IID_IClassFactory, (LPVOID FAR *)&pIClassFactory);

 if (SUCCEEDED(hr))
 {
 //Create the Koala asking for IID_IPersist
 pIClassFactory->CreateInstance(NULL
 , IID_IPersist, (LPVOID FAR *)&pAV->m_pIPersist);

 //We're done with the class factory, so release it.
 pIClassFactory->Release();
 }

 break;

 case IDM_OBJECTCREATECOCI:
 if (NULL!=pAV->m_pIPersist)
 {
 pAV->m_pIPersist->Release();
 CoFreeUnusedLibraries();
 }

 //Simpler creation: use CoCreateInstance
 dwClsCtx=(pAV->m_fEXE) ? CLSCTX_LOCAL_SERVER :
 CLSCTX_INPROC_SERVER;

 CoCreateInstance(CLSID_Koala, NULL, dwClsCtx
 , IID_IPersist, (LPVOID FAR *)&pAV->m_pIPersist);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 21

 break;

 case IDM_OBJECTRELEASE:
 if (NULL==pAV->m_pIPersist)
 break;

 pAV->m_pIPersist->Release();
 pAV->m_pIPersist=NULL;

 CoFreeUnusedLibraries();
 break;

 case IDM_OBJECTGETCLASSID:
 if (NULL==pAV->m_pIPersist)
 break;

 hr=pAV->m_pIPersist->GetClassID(&clsID);

 if (SUCCEEDED(hr))
 {
 LPSTR psz;
 LPMALLOC pIMalloc;

 //String from CLSID uses task Malloc
 StringFromCLSID(clsID, &psz);
 MessageBox(hWnd, psz, "Object Class ID", MB_OK);

 CoGetMalloc(MEMCTX_TASK, &pIMalloc);
 pIMalloc->Free(psz);
 pIMalloc->Release();
 }
 else
 {
 MessageBox(hWnd, "IPersist::GetClassID call failed"
 , "Koala Demo", MB_OK);
 }

 break;

 case IDM_OBJECTEXIT:
 PostMessage(hWnd, WM_CLOSE, 0, 0L);
 break;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 22 :

 break;

 default:
 return (DefWindowProc(hWnd, iMsg, wParam, lParam));
 }

 return 0L;
 }

CAppVars::CAppVars(HINSTANCE hInst, HINSTANCE hInstPrev, UINT nCmdShow)
 {
 m_hInst =hInst;
 m_hInstPrev =hInstPrev;
 m_nCmdShow =nCmdShow;

 m_hWnd =NULL;
 m_fEXE =FALSE;

 m_pIPersist =NULL;
 m_fInitialized=FALSE;
 return;
 }

CAppVars::~CAppVars(void)
 {
 if (NULL!=m_pIPersist)
 m_pIPersist->Release();

 if (IsWindow(m_hWnd))
 DestroyWindow(m_hWnd);

 if (m_fInitialized)
 CoUninitialize();

 return;
 }

BOOL CAppVars::FInit(void)
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 23

 WNDCLASS wc;
 DWORD dwVer;

 dwVer=CoBuildVersion();

 if (rmm!=HIWORD(dwVer))
 return FALSE;

 if (FAILED(CoInitialize(NULL)))
 return FALSE;

 m_fInitialized=TRUE;

 if (!m_hInstPrev)
 {
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = ObjectUserWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = CBWNDEXTRA;
 wc.hInstance = m_hInst;
 wc.hIcon = LoadIcon(m_hInst, "Icon");
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
 wc.lpszClassName = "OBJUSER";

 if (!RegisterClass(&wc))
 return FALSE;
 }

 m_hWnd=CreateWindow("OBJUSER", "Koala Component Object Demo"
 , WS_OVERLAPPEDWINDOW,35, 35, 350, 250, NULL, NULL, m_hInst, this);

 if (NULL==m_hWnd)
 return FALSE;

 ShowWindow(m_hWnd, m_nCmdShow);
 UpdateWindow(m_hWnd);

 CheckMenuItem(GetMenu(m_hWnd), IDM_OBJECTUSEDLL, MF_CHECKED);
 CheckMenuItem(GetMenu(m_hWnd), IDM_OBJECTUSEEXE, MF_UNCHECKED);

 return TRUE;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 24 :

OBJUSER.H

/*
 * OBJUSER.H
 *
 * Definitions for an user of the Koala objects.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#ifndef _OBJUSER_H_
#define _OBJUSER_H_

#include <bookguid.h>

//Menu Resource ID and Commands
#define IDR_MENU 1

#define IDM_OBJECTUSEDLL 100
#define IDM_OBJECTUSEEXE 101
#define IDM_OBJECTCREATECOGCO 102
#define IDM_OBJECTCREATECOCI 103
#define IDM_OBJECTRELEASE 104
#define IDM_OBJECTGETCLASSID 105
#define IDM_OBJECTEXIT 106

//OBJUSER.CPP
LRESULT FAR PASCAL __export ObjectUserWndProc(HWND, UINT, WPARAM,
LPARAM);

/*
 * Application-defined classes and types.
 */

class __far CAppVars
 {
 friend LRESULT FAR PASCAL __export ObjectUserWndProc(HWND, UINT,
WPARAM, LPARAM);

 protected:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 25

 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 UINT m_nCmdShow;

 HWND m_hWnd; //Main window handle
 BOOL m_fEXE; //For tracking menu selection.

 LPPERSIST m_pIPersist; //IPersist interface we have.
 BOOL m_fInitialized; //Did CoInitialize work?

 public:
 CAppVars(HINSTANCE, HINSTANCE, UINT);
 ~CAppVars(void);
 BOOL FInit(void);
 };

typedef CAppVars FAR * LPAPPVARS;

#define CBWNDEXTRA sizeof(LONG)
#define OBJUSERWL_STRUCTURE 0

#endif //_OBJUSER_H_

OBJUSER's only interesting output is a message box that shows the CLSID retrieved from the object
when you make a call to IPersist::GetClassID. Otherwise you should step through this program in a debugger
to really understand what is happening.1 In any case, the first two items on the Koala Object menu control
whether you use the object implemented in an application or a DLL. Either way, the rest of the functions
remain the same. You can choose one of two ways to instantiate an object, you can ::Release the object, and
call IPersist::GetClassID which displays the CLSID as a string in a message box.

Note that in order to run OBJUSER you must have compiled versions of both object implementations
registered in the registration database. You can create the necessary entries by merging the file CHAP04\
CHAP04.REG with REGEDIT.EXE. CHAP04.REG does not contain paths to the modules containing the
object implementations. You must update the paths in REGEDIT such that the OBJUSER can file the DLL
and EXE.

For OBJUSER and any other component user, there are three steps to instantiate and manage a
component object (Note that OBJUSER also performs the four steps outlined in "The New Application for
Windows Objects" since it's an EXE and defines a task):
1. #include <initguid> in one source file of the compilation to create a code segment containing
CLSIDs and IIDs.
2. Create an object based on a CLSID using one of two routes:

a. If you only need one object call CoCreateInstance with the CLSID and
the IID of the interface you desire on the object.
b. If you need more than one object, call CoGetClassObject to obtain an
class factory (an IClassFactory pointer) for the CLSID and call
IClassFactory::CreateInstance as much as you want with the IID of the interface

1Preview Note: I might be inclined to add more message boxes to indicate success or failure of the API calls to make it a little more
friendly.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 26 :

you desire on the object. Call IClassFactory::Release when finished.
3. Use the object through the interface pointer, ::Release it through that
pointer when finished, and call CoFreeUnusedLibraries.

The first step only affects your build environment and compilation but does not really matter to
programming. The second step is the real meat of our discussion as it shows exactly how to instantiate a
component object. The third step deals with how you manage and free the object through your interface
pointer.
#include <initguid.h> and Precompiled Headers
Anything that ever references any GUID, be it a CLSID or IID must #include the file initguid.h once, and
only once, in the entire compilation of your module. This includes all component users and all objects
(component objects or not) and means that you should #include <initguid.h> in one, and only one, file of
your application. Including the file insures that all standard GUIDs are defined and that all defined GUIDs,
including your own, end up in a discardable code segment instead of your data segment which is preferred
since defined GUIDs are always constant. INITGUID.H also allows you to use the DEFINE_GUID or
DEFINE_OLEGUID macros for defining your own IIDs and CLSIDs as shown in the BOOKGUID.H file in
the INC directory.

If you have typically use a central include file for all files in your project, wrap an #ifdef statement
around the #include. The samples have such a statement in the shared BOOKGUID.H file (in the INC
directory):

#ifdef INITGUIDS
#include <initguid.h>
#endif

Only one file in each sample project #defines INITGUIDS. Note that there is a similar symbol, INITGUID
used in COMPOBJ.H for similar purposes. However, you cannot use this symbol itself because COMPOBJ.H
later will not pull in another necessary include file (COGUID.H), that is, you will not compile.

Including INITGUID.H only once is a trick when using precompiled headers, as will be popular when we
start including all the lengthy OLE 2.0 header files. Create the precompiled header on a file that does not
include INITGUID.H–the samples using precompilation all use a file precomp.cpp that contains only one
#include statement. The precompiled header from this step can then be used to compile with all files except
the one in which you want to include INITGUID.H. You should compile that single file without using the
precompiled header pulling in the extra file.
Instantiate a Component Object
The component object library provides two fundamental object creation functions: CoCreateInstance, and
CoGetClassObject combined with IClassFactory::CreateInstance. Which API you use depends on how many
objects you need at a given time.

NOTE: OLE 2.0 Container applications do not directly use the CoCreateInstance or CoGetClassObject
functions to create compound document objects. Instead, they use functions such as OleCreate that
internally use CoCreateInstance as discussed in Chapter 9. As a container implementor, you should still
understand how compound document objects are created through these mechanisms.
To create a single object given a CLSID, use CoCreateInstance which internally uses CoGetClassObject
as described a little later. The code below to demonstrate this call is adapted from OBJUSER, modifying
the symbols and their locations for ease of explanation:
HRESULT hr;
DWORD dwClsCtx;
LPPERSIST pIPersist;
LPUNKNOWN punkOuter=NULL;

//This controls where the object lives based on a meny selection.
dwClsCtx=(fEXE) ? CLSCTX_LOCAL_SERVER : CLSCTX_INPROC_SERVER;

CoCreateInstance(CLSID_Koala, punkOuter, dwClsCtx
 , IID_IPersist, (LPVOID FAR *)&pIPersist);

First note the naming of pointers to interfaces as shown with LPPERSIST and LPUNKNOWN. OLE 2.0
follows a convention where a far pointer to an interface, that is of type IInterface FAR *, is typed as
LPINTERFACE where the interface name sans 'I' is appended in all-caps to an LP. So LPUNKNOWN is an
IUnknown FAR * and LPPERSIST is IPersist FAR *.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 27

CoCreateInstance takes five parameters, the names of which vary with the object class and interfaces you
are using in your own implementation. Those shown here are similar to those in the OBJUSER program:

CLSID_Koala REFIID: A reference (a real C++ reference) to the class ID of the object you wish
to create. In this example we are creating a "Koala" object implemented in
"Implementing a Component Object and Server" section below. Note that in C,
since there is no concept of a reference, you must precede this value with the &
operation, that is, &CLSID_Koala.

punkOuter LPUNKNOWN: A pointer to the controlling unknown if the object is being
created as part of an aggregate. See the section titled "Object Reusability" for
more information.

dwClsCtx DWORD: Flags indicating the context in which the object is allowed to run which
can be any combination of CLSCTX_LOCAL_SERVER (object in .EXE),
CLSCTX_INPROC_SERVER (object in DLL) or CLSCTX_INPROC_HANDLER
(compound document object handler DLL). OBJUSER chooses to run either a
DLL or EXE based object depending on a menu choice.

IID_Persist REFIID: A reference to the interface ID you wish to obtain for this object. If the
object does not support this interface, CoCreateInstance will fail. Note that as with
the class ID, C programs must again prepend the & operator to an IID.

&pIPersist LPVOID FAR *: A pointer to the location in which CoCreateInstance is to store
the interface pointer on return. If CoCreateInstance fails, the contents of this
variable will be NULL on return.

Note that when more than one CLSCTX_* flag is specified, the libraries will attempt to load them in the
order CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER, then CLSCTX_LOCAL_SERVER,
that is, always look for a DLL first (for better performance) only trying another EXE as a last resort.

Internally CoCreateInstance executes a three-step process to create the new object which can be written
in pseudo-code as:

BEGIN
 Obtain a class factory (IClassFactory) for the desired class.
 Call IClassFactory::CreateInstance to create the object.
 Call IClassFactory::Release to free the class factory.
END

The first step, obtaining a class factory (also called a class object) is the exact function of the other relevant
API, CoGetClassObject. A class factory is an object that implements the IClassFactory interface as defined in
COMPOBJ.H:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 28 :

DECLARE_INTERFACE_(IClassFactory, IUnknown)
 {
 [IUnknown methods included]

 //IClassFactory methods
 STDMETHOD(CreateInstance) (THIS_ IUnknown FAR* pUnkOuter, REFIID riid,
 LPVOID FAR* ppvObject) PURE;
 STDMETHOD(LockServer) (THIS_ BOOL fLock) PURE;
 };

typedef IClassFactory FAR* LPCLASSFACTORY;

For cases where you only want to create one object of this class, CoCreateInstance suffices. However, if you
want to create more than one object at a time, call CoGetClassObject to retrieve a class factory for the class,
call IClassFactory::CreateInstance as many times as necessary, and call IClassFactory::Release when you are
through. The code below shows an equivalent implementation to the previous code above but using
CoGetClassObject instead:

HRESULT hr;
DWORD dwClsCtx;
LPPERSIST pIPersist;
LPUNKNOWN punkOuter=NULL;
LPCLASSFACTORY pIClassFactory;

dwClsCtx=(fEXE) ? CLSCTX_LOCAL_SERVER :
 CLSCTX_INPROC_SERVER;

hr=CoGetClassObject(CLSID_Koala, dwClsCtx, NULL
 , IID_IClassFactory, (LPVOID FAR *)&pIClassFactory);

if (SUCCEEDED(hr))
 {
 //Create the Koala asking for IID_IPersist
 pIClassFactory->CreateInstance(punkOuter
 , IID_IPersist, (LPVOID FAR *)&pIPersist);

 //We're done with the class factory, so release it.
 pIClassFactory->Release();
 }

This code is almost the exact implementation of CoCreateInstance inside the component object library: the
parameters you pass to CoCreateInstance are simply passed to CoGetClassObject and
IClassFactory::CreateInstance. The extra parameters to CoGetClassObject are a NULL (a reserved LPVOID
that should always be NULL), the interface ID you desire on the class object (always IID_IClassFactory in
OLE 2.0 but could have more options in the future), and a location in which to store the pointer to the class
object.

Remember that since CoGetClassObject is a function that creates a new interface pointer (reference
counting rule #1 in "Reference Counting" in Chapter 3), you are responsible to ::Release that pointer when
you are finished which is shown in the code above.

NOTE: If you want to hold the class factory object for a longer period of time, you must call
IClassFactory::LockServer(TRUE). A reference count on a class factory does not guarantee that the
server will stay in memory and that you could use the class factory at a later time. For the reasons, read
the section titled "Provide an Unloading Mechanism" underneath "Implementing a Component Object
and Server" below. In short, if a class factory reference could be used to keep a server in memory, then it
can only shut down when that reference goes to zero. In the case of an EXE server, that reference can
only go to zero if the server is being unloaded. Catch-22. Therefore you must use ::LockServer(TRUE)
when you hold on to a class factory and ::LockServer(FALSE) after you release. Besides, if the server
is locked, retrieving another class factory from it is cheap.
Manage the Object and Call CoFreeUnusedLibraries

What you do with an object once you have obtained an interface pointer is entirely dependent on the object
itself and really what most of the chapters in the book are about. You must, in any case, be absolutely sure to
call ::Release through that interface pointer once you are done with the object. Otherwise you doom the
object to live immortal in memory for all eternity until the universe collapses (power off or the jolly three-
finger reset).

Releasing the object is not the only consideration, however. When you initially instantiate an object

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 29

implemented in a DLL, COMPOBJ.DLL loads that DLL into memory using a function CoLoadLibrary.
When the DLL is no longer needed, COMPOBJ.DLL calls CoFreeLibrary. Both functions map to
LoadLibrary and FreeLibrary under Windows but are named differently for portability to other platforms such
as the Apple MacIntosh.

However, the component object library does not know when an object in a DLL is destroyed because
once it has facilitated loading and instantiating that object, communication between the object and its user is
direct, completely bypassing everything in OLE 2.0. Therefore a DLL may remain loaded in memory even
when no objects exist for that code to service. Over time, many DLLs may be loaded and chew up valuable
memory. The component object library needs a cue to free those DLLs that are no longer needed. This is
very much like discardable global memory where memory allocated and freed will stay in memory until
discarded, even if no one is using that memory.

For this reason an all object users should periodically call CoFreeUnusedLibraries, primarily after you
just ::Release an object for good. In this function, COMPOBJ.DLL can ask each DLL loaded in your task if it
can be unloaded. If the DLL answers yes, then CoFreeLibrary is called on it to free the memory the DLL
occupies. CoFreeUnusedLibraries does not affect other EXEs that are servicing objects, because those EXEs
unload themselves when they are no longer servicing any objects. CoFreeUnusedLibraries is something like
calling GlobalCompact(-1) which will purge memory of all unreferenced discardable memory segments.

NOTE: The OLE 2.0 implementation of CoFreeUnusedLibraries does nothing. However, your user
code should still call the function after destroying an object so when the function is implemented you will
work correctly.
A user can control whether or not the server code stays in memory even when that server has no
outstanding objects through a second function in IClassFactory called ::LockServer. For various reasons,
simply calling IClassFactory::AddRef does not guarantee that the code implementing that class factory
actually stays in memory. Instead, ::LockServer(TRUE) increments a lock count in the server
and ::LockServer(FALSE) decrements that count. When the server has a positive lock count, the DLL
will not allow itself to be unloaded and an EXE will prevent itself from closing automatically.

Implementing a Component Object and Server 1

Let's now implement the simple Koala component object with the IPersist interface as shown in the source
code in Listing 4-3. The reason Koala implements the IPersist interface is because that interface has standard
OLE 2.0-provided marshaling support meaning we can place this object in a DLL or EXE as we'll actually
demonstrate. In real-world use, IPersist is never implemented by itself as it always serves as a base class for a
few other interfaces.

KOALA.CPP

/*
 * KOALA.CPP
 * Koala Object version 1.00
 *
 * Implementation of the CKoala and CImpIPersist objects that works
 * in either an EXE or DLL.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 *
 */

Listing 4-3: Implementation of the Koala object structured to live in either DLL or EXE.

1Note again that "Server" here means a generic object server an not a compound document server. The latter has much stronger notions of
'windows' and 'documents' and provide storage, data transfer, and editing capabilities on their objects. These types of features will not be
discussed in this chapter but instead introduced gradually over the rest of the chapters in this book.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 30 :

#include "koala.h"

CKoala::CKoala(LPUNKNOWN punkOuter, LPFNDESTROYED pfnDestroy)
 {
 m_cRef=0;
 m_punkOuter=punkOuter;
 m_pfnDestroy=pfnDestroy;

 //NULL any contained interfaces initially.
 m_pIPersist=NULL;

 return;
 }

CKoala::~CKoala(void)
 {
 //Free contained interfaces.
 if (NULL!=m_pIPersist)
 delete m_pIPersist; //Interface does not free itself.

 return;
 }

BOOL CKoala::FInit(void)
 {
 LPUNKNOWN pIUnknown=(LPUNKNOWN)this;

 if (NULL!=m_punkOuter)
 pIUnknown=m_punkOuter;

 //Allocate contained interfaces.
 m_pIPersist=new CImpIPersist(this, pIUnknown);

 return (NULL!=m_pIPersist);
 }

STDMETHODIMP CKoala::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 *ppv=NULL;

 /*

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 31

 * The only calls we get here for IUnknown are either in a non-aggregated
 * case or when we're created in an aggregation, so in either we always
 * return our IUnknown for IID_IUnknown.
 */
 if (IsEqualIID(riid, IID_IUnknown))
 *ppv=(LPVOID)this;

 /*
 * For IPersist we return our contained interface. For EXEs we
 * have to return our interface for IPersistStorage as well since
 * OLE 2.0 doesn't support IPersist implementations by themselves
 * (assumed only to be a base class). If a user asked for an
 * IPersistStorage and used it, they would crash--but this is
 * a demo, not a real object.
 */
 if (IsEqualIID(riid, IID_IPersist) || IsEqualIID(riid, IID_IPersistStorage))
 *ppv=(LPVOID)m_pIPersist;

 //AddRef any interface we'll return.
 if (NULL!=*ppv)
 {
 ((LPUNKNOWN)*ppv)->AddRef();
 return NOERROR;
 }

 return ResultFromScode(E_NOINTERFACE);
 }

STDMETHODIMP_(ULONG) CKoala::AddRef(void)
 {
 return ++m_cRef;
 }

STDMETHODIMP_(ULONG) CKoala::Release(void)
 {
 ULONG cRefT;

 cRefT=--m_cRef;

 if (0==m_cRef)
 {
 /*
 * Tell the housing that an object is going away so it can
 * shut down if appropriate.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 32 :

 */
 if (NULL!=m_pfnDestroy)
 (*m_pfnDestroy)();

 delete this;
 }

 return cRefT;
 }

CImpIPersist::CImpIPersist(LPVOID pObj, LPUNKNOWN punkOuter)
 {
 m_cRef=0;
 m_pObj=pObj;
 m_punkOuter=punkOuter;
 return;
 }

CImpIPersist::~CImpIPersist(void)
 {
 return;
 }

STDMETHODIMP CImpIPersist::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 return m_punkOuter->QueryInterface(riid, ppv);
 }

STDMETHODIMP_(ULONG) CImpIPersist::AddRef(void)
 {
 ++m_cRef;
 return m_punkOuter->AddRef();
 }

STDMETHODIMP_(ULONG) CImpIPersist::Release(void)
 {
 --m_cRef;
 return m_punkOuter->Release();
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 33

STDMETHODIMP CImpIPersist::GetClassID(LPCLSID pClsID)
 {
 *pClsID=CLSID_Koala;
 return NOERROR;
 }

KOALA.H

/*
 * KOALA.H
 *
 * Classes that implement the Koala object independent of whether
 * we live in a DLL or EXE.
 *
 * Copyright (c)1993 Microsoft Corporation, All Right Reserved
 */

#ifndef _KOALA_H_
#define _KOALA_H_

#include <windows.h>
#include <ole2.h> //ole2.h has IPersist, compobj.h doesn't

//This defines all GUIDs used in this book so we can track them easily.
#include <bookguid.h>

//Type for an object-destroyed callback
typedef void (FAR PASCAL *LPFNDESTROYED)(void);

/*
 * The Koala object is implemented in its own class with its own
 * IUnknown to support aggregation. It contains one CImpIPersist
 * object that we use to implement the externally exposed interfaces.
 */

class __far CKoala : public IUnknown
 {
 //Make any contained interfaces your friends so they can get at you

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 34 :

 friend class CImpIPersist;

 protected:
 ULONG m_cRef; //Object reference count.
 LPUNKNOWN m_punkOuter; //Controlling Unknown for aggregation

 LPFNDESTROYED m_pfnDestroy; //Function to call on closure.
 LPPERSIST m_pIPersist; //Contained interface implemetation

 public:
 CKoala(LPUNKNOWN, LPFNDESTROYED);
 ~CKoala(void);

 BOOL FInit(void);

 //Non-delegating object IUnknown
 STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);
 STDMETHODIMP_(ULONG) AddRef(void);
 STDMETHODIMP_(ULONG) Release(void);
 };

typedef CKoala FAR * LPCKoala;

/*
 * Interface implementations for the CKoala object.
 */

class __far CImpIPersist : public IPersist
 {
 private:
 ULONG m_cRef; //Interface reference count.
 LPVOID m_pObj; //Back pointer to the object.
 LPUNKNOWN m_punkOuter; //Controlling unknown for delegation

 public:
 CImpIPersist(LPVOID, LPUNKNOWN);
 ~CImpIPersist(void);

 //IUnknown members that delegate to m_punkOuter.
 STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);
 STDMETHODIMP_(ULONG) AddRef(void);
 STDMETHODIMP_(ULONG) Release(void);

 //IPersist members
 STDMETHODIMP GetClassID(LPCLSID);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 35

 };

typedef CImpIPersist FAR * LPIMPIPERSIST;

#endif //_KOALA_H_

The Koala object is implemented to support aggregation and to be identically usable in either an EXE or
DLL server, but not without some impact. In addition, remember that we can call CoGetMalloc at any time
to obtain access to shared or task memory, although the implementation of Koala shown here do not have
occasion to use this feature.

To support aggregation, as we'll see in "Object Reusability", the object must be aware of a controlling
unknown, if there is one, that is cognizant of all interfaces supported by the aggregate object. The object
itself, implemented using the CKoala C++ class,1 implements IUnknown but contains the interface
implementation of IPersist in another C++ object called CImpIPersist. In aggregation, the interface
implementations must always delegate all their IUnknown calls to the object that controls that interface's
lifetime. When we're not aggregated and punkOuter passed to CKoala::CKoala is NULL, then CKoala passes
its own IUnknown implementation to CImpIPersist instead. When the Koala object is aggregated, CKoala
will receive a non-NULL punkOuter which it passes to CImpIPersist. In either case, the IPersist interface
implementation will always delegate its IUnknown calls to a full object, only performing trivial reference
counting on the interface for debugging purposes. If this seems confusing, defer aggregation until later.

The only interesting function of CImpIPersist is ::GetClassID, which just returns the CLSID defined the
Koala object. However, the implementation of CKoala, the entire object, has a few more interesting features.
First of all, note that even though we hold on to the punkOuter pointer, we do not ::AddRef it because we
know that if punkOuter is non-NULL, the lifetime of that pointer completely contains our object's lifetime, so
an extra reference count is unnecessary.

Second, we supply a two-phase instantiation process for use by the class factory we provide below. The
CKoala constructor only saves variables whereas ::FInit performs any operations that are prone to failure so
the caller can determine if a failure did occur. Since instantiating the interface implementation CImpIPersist
might fail, we defer that action until ::FInit is called.

Next, the ::QueryInterface implementation in CKoala, which knows all the interfaces implemented in this
object, makes a special case for the IPersistStorage interface. When a user like OBJUSER asks the DLL
implementation for an interface identified with IID_IPersist, that IID comes directly into ::QueryInterface.
However, when OBJUSER asks for IID_IPersist and the object lives in an EXE, that request goes through the
marshaling layer in the component object model. The OLE 2.0 implementation of this marshaling does not
single out IPersist and will always ask the object for IPersistStorage even if the user only asked for IPersist.
So we also check for IPersistStorage here. Of course, this must be avoided in real applications, since the
user might have actually asked for IPersistStorage but only received an IPersist. But like I pointed out above,
IPersist is never useful implemented by itself–it's only used here for demonstration.

The final feature of the Koala object allows it to notify its server, either a DLL or an EXE, when the
object is destroyed in ::Release. This is a special technique I created to isolate the object from any specifics
about its DLL or EXE server–it's not part of the OLE 2.0 specifications so use whatever method is convenient
for you. In any case, when the server receives this notification it decrements the count of active objects in the
server. If the object lives in a DLL, that DLL might be able to then mark itself as unloadable; it the object
lives in an EXE and it was the last object, the EXE might shut down on this notification. The class factory
we'll write that instantiates these Koala objects will provide a pointer of type LPFNDESTROYED (see
KOALA.H) that the object calls on its final ::Release. The server may take whatever action is deems
necessary on this notification.

With the object isolated from any concern about where it lives, we can now concentrate on seeing how
you expose that object from a DLL or EXE which share the same four steps to manage an object although
their exact implementations of each step differ:
1. Register the CLSIDs for every class implemented in the server in the registration database.
2. Implement the class factory for each object class supported by the server. A single DLL or EXE

1Remember here that a C++ class is a convenient way to create interface function tables. CKoala is never exposed to anything outside its
DLL or EXE, period. It only exposes it's IUnknown and IPersist interface function tables.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 36 :

server can handle any number of classes.
3. Expose the class factory to the component object library.
4. Provide a shutdown or unloading mechanism when there are no more objects or lock counts on
the server.

The DLL housing of Koala, DKOALA.DLL, is shown in Listing 4-4 with the EXE housing,
EKOALA.EXE, shown in Listing 4-5. Note that the Koala object implementation itself shown in Listing 4-3
is identical in both the CHAP04\DKOALA and CHAP04\EKOALA directories in the sample code. When
you run the OBJUSER program using each of these servers, you will notice a difference in the response time
of calling the object's ::GetClassID. When using a DLL server, the response is quick because the call goes
directly to the object implementation. When using an EXE server the response is slower since
the ::GetClassID call must be worked through the marshaling process.

DKOALA.CPP

/*
 * DKOALA.CPP
 *
 * Example object implemented in a DLL. This object supports
 * IUnknown and IPersist interfaces, meaning it doesn't know anything more
 * than how to return its class ID, but it demonstrates how any object
 * is presented inside an DLL.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

//Must do this once in the entire build or we can't define our own GUIDs
#define INITGUIDS

#include "dkoala.h"

//Count number of objects and number of locks.
ULONG g_cObj=0;
ULONG g_cLock=0;

HANDLE FAR PASCAL LibMain(HINSTANCE hInst, WORD wDataSeg
 , WORD cbHeapSize, LPSTR lpCmdLine)
 {
 if (0!=cbHeapSize)
 UnlockData(0);

 return hInst;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 37

void FAR PASCAL WEP(int bSystemExit)
 {
 return;
 }

Listing 4-4: The DKOALA.DLL implementation to house the Koala object.

HRESULT __export FAR PASCAL DllGetClassObject(REFCLSID rclsid, REFIID riid
 , LPVOID FAR *ppv)
 {
 if (!IsEqualCLSID(rclsid, CLSID_Koala))
 return ResultFromScode(E_FAIL);

 //Check that we can provide the interface
 if (!IsEqualIID(riid, IID_IUnknown) && !IsEqualIID(riid, IID_IClassFactory))
 return ResultFromScode(E_NOINTERFACE);

 //Return our IClassFactory for Koala objects
 *ppv=(LPVOID)new CKoalaClassFactory();

 if (NULL==*ppv)
 return ResultFromScode(E_OUTOFMEMORY);

 //Don't forget to AddRef the object through any interface we return
 ((LPUNKNOWN)*ppv)->AddRef();

 return NOERROR;
 }

STDAPI DllCanUnloadNow(void)
 {
 SCODE sc;

 //Our answer is whether there are any object or locks
 sc=(0L==g_cObj && 0==g_cLock) ? S_OK : S_FALSE;
 return ResultFromScode(sc);
 }

/*
 * ObjectDestroyed
 *

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 38 :

 * Purpose:
 * Function for the Koala object to call when it gets destroyed.
 * Since we're in a DLL we only track the number of objects here
 * letting DllCanUnloadNow take care of the rest.
 */

void FAR PASCAL ObjectDestroyed(void)
 {
 g_cObj--;
 return;
 }

CKoalaClassFactory::CKoalaClassFactory(void)
 {
 m_cRef=0L;
 return;
 }

CKoalaClassFactory::~CKoalaClassFactory(void)
 {
 return;
 }

STDMETHODIMP CKoalaClassFactory::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 *ppv=NULL;

 //Any interface on this object is the object pointer.
 if (IsEqualIID(riid, IID_IUnknown) || IsEqualIID(riid, IID_IClassFactory))
 *ppv=(LPVOID)this;

 /*
 * If we actually assign an interface to ppv we need to AddRef it
 * since we're returning a new pointer.
 */
 if (NULL!=*ppv)
 {
 ((LPUNKNOWN)*ppv)->AddRef();
 return NOERROR;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 39

 return ResultFromScode(E_NOINTERFACE);
 }

STDMETHODIMP_(ULONG) CKoalaClassFactory::AddRef(void)
 {
 return ++m_cRef;
 }

STDMETHODIMP_(ULONG) CKoalaClassFactory::Release(void)
 {
 ULONG cRefT;

 cRefT=--m_cRef;

 if (0L==m_cRef)
 delete this;

 return cRefT;
 }

STDMETHODIMP CKoalaClassFactory::CreateInstance(LPUNKNOWN punkOuter
 , REFIID riid, LPVOID FAR *ppvObj)
 {
 LPCKoala pObj;
 HRESULT hr;

 *ppvObj=NULL;
 hr=ResultFromScode(E_OUTOFMEMORY);

 //Verify that if there is a controlling unknown it's asking for IUnknown
 if (NULL!=punkOuter && !IsEqualIID(riid, IID_IUnknown))
 return ResultFromScode(E_NOINTERFACE);

 //Create the object telling it a function to notify us when it's gone.
 pObj=new CKoala(punkOuter, ObjectDestroyed);

 if (NULL==pObj)
 return hr;

 if (pObj->FInit())
 hr=pObj->QueryInterface(riid, ppvObj);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 40 :

 //Kill the object if initial creation or FInit failed.
 if (FAILED(hr))
 delete pObj;
 else
 g_cObj++;

 return hr;
 }

STDMETHODIMP CKoalaClassFactory::LockServer(BOOL fLock)
 {
 if (fLock)
 g_cLock++;
 else
 g_cLock--;

 return NOERROR;
 }

DKOALA.H

/*
 * DKOALA.H
 *
 * Definitions, classes, and prototypes for a DLL that
 * provides Koala objects to any other object user.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#ifndef _DKOALA_H_
#define _DKOALA_H_

//Get the object definitions that also includes windows.h, et. al.
#include "koala.h"

void FAR PASCAL ObjectDestroyed(void);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 41

//DKOALA.CPP
//This class factory object creates Koala objects.

class __far CKoalaClassFactory : public IClassFactory
 {
 protected:
 ULONG m_cRef; //Reference count on class object

 public:
 CKoalaClassFactory(void);
 ~CKoalaClassFactory(void);

 //IUnknown members
 STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);
 STDMETHODIMP_(ULONG) AddRef(void);
 STDMETHODIMP_(ULONG) Release(void);

 //IClassFactory members
 STDMETHODIMP CreateInstance(LPUNKNOWN, REFIID, LPVOID FAR *);
 STDMETHODIMP LockServer(BOOL);
 };

typedef CKoalaClassFactory FAR * LPCKoalaClassFactory;

#endif //_DKOALA_H_

EKOALA.CPP

/*
 * EKOALA.CPP
 *
 * Object implemented in an application. This object supports
 * IUnknown and IPersist interfaces, meaning it doesn't know anything more
 * than how to return its class ID, but it demonstrates how any object
 * is presented inside an EXE.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

//Must do this once in the entire build or we can't define our own GUIDs
#define INITGUIDS

Listing 4-5: The EKOALA.EXE implementation to house the Koala object.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 42 :

#include <ole2ver.h>
#include "ekoala.h"

//Count number of objects and number of locks.
ULONG g_cObj=0;
ULONG g_cLock=0;

//Make window handle global so other code can cause a shutdown
HWND g_hWnd=NULL;

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)
 {
 MSG msg;
 LPAPPVARS pAV;

 //This is suggested to handle many LRPC calls we might make
 SetMessageQueue(96);

 //Create and initialize the application.
 pAV=new CAppVars(hInst, hInstPrev, pszCmdLine, nCmdShow);

 if (NULL==pAV)
 return -1;

 if (pAV->FInit())
 {
 while (GetMessage(&msg, NULL, 0,0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 delete pAV;
 return msg.wParam;
 }

LRESULT FAR PASCAL __export KoalaWndProc(HWND hWnd, UINT iMsg

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 43

 , WPARAM wParam, LPARAM lParam)
 {
 LPAPPVARS pAV;

 //This will be valid for all messages except WM_NCCREATE
 pAV=(LPAPPVARS)GetWindowLong(hWnd, KOALAWL_STRUCTURE);

 switch (iMsg)
 {
 case WM_NCCREATE:
 //CreateWindow passed pAV to us.
 pAV=(LPAPPVARS)((LONG)((LPCREATESTRUCT)lParam)->lpCreateParams);

 SetWindowLong(hWnd, KOALAWL_STRUCTURE, (LONG)pAV);
 return (DefWindowProc(hWnd, iMsg, wParam, lParam));

 case WM_DESTROY:
 PostQuitMessage(0);
 break;

 default:
 return (DefWindowProc(hWnd, iMsg, wParam, lParam));
 }

 return 0L;
 }

/*
 * ObjectDestroyed
 *
 * Purpose:
 * Function for the Koala object to call when it gets destroyed.
 * We destroy the main window if the proper conditions are met for
 * shutdown.
 */

void FAR PASCAL ObjectDestroyed(void)
 {
 g_cObj--;

 //No more objects and no locks, shut the app down.
 if (0==g_cObj && 0==g_cLock && IsWindow(g_hWnd))
 PostMessage(g_hWnd, WM_CLOSE, 0, 0L);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 44 :

 return;
 }

CAppVars::CAppVars(HINSTANCE hInst, HINSTANCE hInstPrev, LPSTR pszCmdLine
 , UINT nCmdShow)
 {
 //Initialize WinMain parameter holders.
 m_hInst =hInst;
 m_hInstPrev =hInstPrev;
 m_pszCmdLine=pszCmdLine;
 m_nCmdShow =nCmdShow;

 m_hWnd=NULL;
 m_dwRegCO=0;
 m_pIClassFactory=NULL;
 m_fInitialized=FALSE;
 return;
 }

CAppVars::~CAppVars(void)
 {
 //Opposite of CoRegisterClassObject, takes class factory ref to 1
 if (0L!=m_dwRegCO)
 CoRevokeClassObject(m_dwRegCO);

 //This should be the last ::Release, which frees the class factory.
 if (NULL!=m_pIClassFactory)
 m_pIClassFactory->Release();

 if (m_fInitialized)
 CoUninitialize();

 return;
 }

BOOL CAppVars::FInit(void)
 {
 WNDCLASS wc;
 HRESULT hr;
 DWORD dwVer;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 45

 //Check command line for -Embedding
 if (lstrcmpi(m_pszCmdLine, "-Embedding"))
 return FALSE;

 dwVer=CoBuildVersion();

 if (rmm!=HIWORD(dwVer))
 return FALSE;

 if (FAILED(CoInitialize(NULL)))
 return FALSE;

 m_fInitialized=TRUE;

 if (!m_hInstPrev)
 {
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = KoalaWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = CBWNDEXTRA;
 wc.hInstance = m_hInst;
 wc.hIcon = NULL;
 wc.hCursor = NULL;
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = "Koala";

 if (!RegisterClass(&wc))
 return FALSE;
 }

 m_hWnd=CreateWindow("Koala", "Koala", WS_OVERLAPPEDWINDOW
 ,35, 35, 350, 250, NULL, NULL, m_hInst, this);

 if (NULL==m_hWnd)
 return FALSE;

 g_hWnd=m_hWnd;

 /*
 * Create our class factory and register it for this application
 * using CoRegisterClassObject. We are able to service more than
 * one object at a time so we use REGCLS_MULTIPLEUSE.
 */
 m_pIClassFactory=new CKoalaClassFactory();

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 46 :

 if (NULL==m_pIClassFactory)
 return FALSE;

 //Since we hold on to this, we should AddRef it.
 m_pIClassFactory->AddRef();

 hr=CoRegisterClassObject(CLSID_Koala, (LPUNKNOWN)m_pIClassFactory
 , CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE, &m_dwRegCO);

 if (FAILED(hr))
 return FALSE;

 return TRUE;
 }

CKoalaClassFactory::CKoalaClassFactory(void)
 {
 m_cRef=0L;
 return;
 }

CKoalaClassFactory::~CKoalaClassFactory(void)
 {
 return;
 }

STDMETHODIMP CKoalaClassFactory::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 *ppv=NULL;

 //Any interface on this object is the object pointer.
 if (IsEqualIID(riid, IID_IUnknown) || IsEqualIID(riid, IID_IClassFactory))
 *ppv=(LPVOID)this;

 if (NULL!=*ppv)
 {
 ((LPUNKNOWN)*ppv)->AddRef();
 return NOERROR;
 }

 return ResultFromScode(E_NOINTERFACE);
 }

STDMETHODIMP_(ULONG) CKoalaClassFactory::AddRef(void)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 47

 {
 return ++m_cRef;
 }

STDMETHODIMP_(ULONG) CKoalaClassFactory::Release(void)
 {
 ULONG cRefT;

 cRefT=--m_cRef;

 if (0L==m_cRef)
 delete this;

 return cRefT;
 }

STDMETHODIMP CKoalaClassFactory::CreateInstance(LPUNKNOWN punkOuter
 , REFIID riid, LPVOID FAR *ppvObj)
 {
 LPCKoala pObj;
 HRESULT hr;

 *ppvObj=NULL;
 hr=ResultFromScode(E_OUTOFMEMORY);

 //Verify that if there is a controlling unknown it's asking for IUnknown
 if (NULL!=punkOuter && !IsEqualIID(riid, IID_IUnknown))
 return ResultFromScode(E_NOINTERFACE);

 //Create the object telling it a function to notify us when it's gone.
 pObj=new CKoala(punkOuter, ObjectDestroyed);

 if (NULL==pObj)
 return hr;

 if (pObj->FInit())
 hr=pObj->QueryInterface(riid, ppvObj);

 g_cObj++;

 /*
 * Kill the object if initial creation or FInit failed. If
 * the object failed then we handle the g_cObj increment above

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 48 :

 * in ObjectDestroyed.
 */
 if (FAILED(hr))
 {
 delete pObj;
 ObjectDestroyed(); //Handle shutdown cases.
 }

 return hr;
 }

STDMETHODIMP CKoalaClassFactory::LockServer(BOOL fLock)
 {
 if (fLock)
 g_cLock++;
 else
 {
 g_cLock--;

 //No more objects and no locks, shut the app down.
 if (0==g_cObj && 0==g_cLock && IsWindow(g_hWnd))
 PostMessage(g_hWnd, WM_CLOSE, 0, 0L);
 }

 return NOERROR;
 }

EKOALA.H

/*
 * EKOALA.H
 *
 * Definitions, classes, and prototypes for an application that
 * provides Koala objects to any other object user.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#ifndef _EKOALA_H_
#define _EKOALA_H_

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 49

//Get the object definitions that also includes windows.h, et. al.
#include "koala.h"

//EKOALA.CPP
LRESULT FAR PASCAL __export KoalaWndProc(HWND, UINT, WPARAM,
LPARAM);

class __far CAppVars
 {
 friend LRESULT FAR PASCAL __export KoalaWndProc(HWND, UINT, WPARAM,
LPARAM);

 protected:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 LPSTR m_pszCmdLine;
 UINT m_nCmdShow;

 HWND m_hWnd; //Main window handle

 BOOL m_fInitialized; //Did CoInitialize work?
 LPCLASSFACTORY m_pIClassFactory; //The class factory we own.
 DWORD m_dwRegCO; //Key from CoRegisterClassObject.

 public:
 CAppVars(HINSTANCE, HINSTANCE, LPSTR, UINT);
 ~CAppVars(void);
 BOOL FInit(void);
 };

typedef CAppVars FAR * LPAPPVARS;

#define CBWNDEXTRA sizeof(LONG)
#define KOALAWL_STRUCTURE 0

void FAR PASCAL ObjectDestroyed(void);

//This class factory object creates Koala objects.

class __far CKoalaClassFactory : public IClassFactory
 {
 protected:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 50 :

 ULONG m_cRef; //Reference count on class object

 public:
 CKoalaClassFactory(void);
 ~CKoalaClassFactory(void);

 //IUnknown members
 STDMETHODIMP QueryInterface(REFIID, LPVOID FAR *);
 STDMETHODIMP_(ULONG) AddRef(void);
 STDMETHODIMP_(ULONG) Release(void);

 //IClassFactory members
 STDMETHODIMP CreateInstance(LPUNKNOWN, REFIID, LPVOID FAR *);
 STDMETHODIMP LockServer(BOOL);
 };

typedef CKoalaClassFactory FAR * LPCKoalaClassFactory;

#endif //_EKOALA_H_

Register CLSIDs
Every object class must have a unique CLSID associated with it in the registration database. The registration
entries for a simple object as we're implementing here are few; as you create objects with more features that
support linking and embedding there will be much more information to add as described in Chapter 10 as well
as in Appendix A of the OLE 2.0 Programmer's Reference. For the purposes of the sample code, the
necessary entries are contained in the file CHAP04.REG. Creating a .reg file is the preferred method of
registering objects and applications since it can be done at install time instead of programmatically at run
time, which is tedious, to say the least. The OLE 2.0 Reference describes the details about installation in its
Appendix A.

The required entries fall under the CLSID key where OLE 2.0 stores information about all classes under
the CLSID spelled out in a string as you can see in the REGEDIT program and shown in Figure 4-5. OLE 2.0
also stores information about its standard interfaces and the code that handles parameter marshaling under the
Interface key. The list below describes the necessary registration for DLL and EXE-based objects:
1. From HKEY_CLASSES_ROOT (the root key of the entire registration database), create the
entry \CLSID\{class ID}=<name> where {class ID} is the value of your CLSID spelled out and
<name> is a human-readable string for your object. The Koala object has the class ID string of
{00021102-0000-0000-C000-000000000046}, which, except to a few odd individuals, is not
something many consider readable.
2. Create an entry under the CLSID entry in step 1 to point to the object code:

a. For DLL objects, register \InprocServer=<path to DLL>
b. For EXE object, register \LocalServer=<path to EXE>
c. For DLL object handlers, register \InprocHandler=<path to DLL>

3. (Optional) If you want to allow a user to look up your CLSID based on a
text string, make an entry under HKEY_CLASSES_ROOT of <ProgID>=<name>
where <ProgID> is a short name without spaces or punctuation, equivalent to an
OLE 1.0 class name, and <name> is the human-readable name of your object
identical to that in step 1. Under this key create another entry of \CLSID={class
ID} where {class ID} is also the same as in step 1.

Entries of the type created in step 3 will be required for compound document objects that should appear
in the Insert Object dialog inside a container application. But that is a subject for a later chapter. Without

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 51

those entries from steps 1 and 2, however, the CoGetClassObject API (which CoCreateInstance uses,
remember) will not be able to locate your object implementation. Note also that the same DLL or EXE can
serve multiple CLSIDs, and in such cases you must make a similar entry under each CLSID you support with
the InprocServer and LocalServer keys can all contain the same path to the same server.
Implement the Class Factory
Telling the component object library where your object code lives is one thing–you still need to provide for
creating objects once that code has been loaded. So the next step is to create a class object that implements
the IClassFactory interface. Once we have this class factory implemented we can provide the code to expose
it outside the server. This is somewhat like implementing a window procedure in order to call RegisterClass
since you have to have a pointer to store in the WNDCLASS you pass to that Windows API. Both sample
implementations, DLL and EXE, use a C++ class of CKoalaClassFactory for this purpose and the two are
almost identical. The only differences between the DLL and EXE CKoalaClassFactory have to do with the
unloading mechanisms we'll discuss below. For now, let's concentrate on those identical parts that instantiate
a CKoala object. For the record, the IUnknown members of this class factory are pretty standard.

Figure 4-5: The populated CLSID section of the registration database showing the entries for Koala.

Each implementation of IClassFactory::CreateInstance is identical and contain three major points of
interest. First, the first parameter to ::CreateInstance is punkOuter which is the controlling unknown for the
object we've been asked to create, if our new object is becoming part of an aggregate. When we instantiate
the object using new CKoala, we pass this punkOuter down to the object so it can delegate properly (again,
see "Object Reusability" for more details). When an object is aggregated, the outer object must ask for an
IUnknown interface on the new object. To enforce this rule, we check that IID_IUnknown is asked for when
punkOuter is non-NULL.

Next, besides passing punkOuter to new CKoala we also pass a pointer to an independent function called
ObjectDestroyed. When the final ::Release of the Koala object is about to free the object, it will call this
function. This allows the object to isolate itself from the nature of its server housing (DLL or EXE) and allow
that housing to act appropriately on the event. You can see again in the CKoala::Release function in Listing
4-3 how and when this function is called. We'll examine what ObjectDestroyed does in both servers in the
section "Provide an Unloading Mechanism" below.

Finally, if the object is successfully instantiated, we still need to initialize it through an internal ::FInit
implemented in the CKoala object. ::FInit is not a standard feature of OLE 2.0 objects and is used here to
support a convenient two-phase creation model common in C++ coding. ::FInit performs all operations that
might fail and is thus able to communicate success or failure back to the class factory during instantiation. If
this second initialization step succeeds, then ::CreateInstance asks the object's ::QueryInterface to return the
appropriate interface pointer, which has the convenient effect of calling that pointer's ::AddRef as required.
Furthermore, ::CreateInstance increments a global object count that the server can use to determine unloading
conditions. If the initialization fails, then ::CreateInstance deletes the object and returns an out-of-memory
error to the caller.

IClassFactory also has a member called LockServer, which either increments or decrements a lock count
on the DLL or EXE in which the class factory lives. ::LockServer provides a method through which a user
can obtain keep a DLL or EXE in memory even if that server is not servicing any objects and has no
outstanding reference counts on its class factory. This allows a user to optimize loading and reloading of
servers, keeping the code in memory even when it's not immediately necessary. Such optimizations can
greatly increase performance when a user deals with a very large server EXE or DLL.

The implementation of ::LockServer in the DLL and EXE versions differs slightly, again to handle the
differences in unloading mechanisms. Their communality is to either increment or decrement a global lock
counter which is used in different ways by the server's unloading mechanism.
Expose the Class Factory
The major difference between DLL and EXE servers is how they expose their class factories, primarily
because a DLL does not define a task and an EXE may, in fact, be run stand-alone outside the context of
object use. In other words, your class factory is an object and the component object library needs to obtain its
IClassFactory pointer. It does so by either calling a function you export from an object DLL (that is, an API
you implement), or by you calling a component object library API from your own code. In either case an API

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 52 :

is used to get the class factory pointer from your code to OLE 2.0's code.
DLL Server

The DLL exposure mechanism is the simplest, so let's start there. Every DLL server must export a function
called DllGetClassObject with the following form:

HRESULT __export FAR PASCAL DllGetClassObject(REFCLSID rclsid, REFIID riid
 , LPVOID FAR * ppv);

The __export is a matter of convenience–if your compiler does not support __export you can still list the
function in the EXPORTS section of your .DEF file. In addition, the macro STDAPI defined in COMPOBJ.H
expands to HRESULT __export FAR PASCAL if you want to use it.

When a user calls CoCreateInstance or CoGetClassObject and passed CLSCTX_INPROC_SERVER, the
component object library will look in the registration database for the location of an InprocServer for the
given CLSID, call CoLoadLibrary to get that server into memory, then call GetProcAddress looking for
DllGetClassObject. The component object library then calls DllGetClassObject with the CLSID and IID
requested by the component user. Your export then creates the appropriate class factory for the CLSID and
returns the appropriate interface pointer for IID, which is usually IClassFactory. By calling this function in
your DLL, the component object library obtains a pointer to your class factory object; essentially
DllGetClassObject is an API you implement for OLE 2.0. This is just like exporting the WEP function from
a DLL such that Windows can locate and call it.

NOTE: Since DllGetClassObject is passed a CLSID, a single DLL (server or handler) can provide class
factories for any number of classes, that is, a single module can be the server for any number of objects.
OLE2.DLL is an example of such a server as it provides most of the internally used objects of OLE 2.0
from one DLL.
All implementations of DllGetClassObject should validate that it can support the requested CLSID as
well as the requested interface for the class factory which can be either IUnknown or IClassFactory. If
both checks succeed, it then instantiates the class factory object (in this case using CKoalaClassFactory).
Remember that as a function that creates a new interface pointer to an object, DllGetClassObject
must ::AddRef the new object before returning:
if (!IsEqualCLSID(rclsid, CLSID_Koala))
 return ResultFromScode(CO_E_CLASSNOTREG);

//Check that we can provide the interface
if (!IsEqualIID(riid, IID_IUnknown) && !IsEqualIID(riid, IID_IClassFactory))
 return ResultFromScode(E_NOINTERFACE);

//Return our IClassFactory for Koala objects
*ppv=(LPVOID)new CKoalaClassFactory();

//Don't forget to AddRef the object through any interface we return
((LPUNKNOWN)*ppv)->AddRef();

EXE Server

Exposing a class factory from an EXE is somewhat different because an EXE has a WinMain, a message
loop, and a window to define its lifetime. When we implement compound document objects in Chapter 10,
these parts of the application will be the same as the end user would see if they ran your application stand-
alone. The real difference is that instead of having the component object library call an exported function
like DllGetClassObject, you pass your class factory object (that is, an IClassFactory pointer) to the
CoRegisterClassObject API, but only under the right circumstances.

The component object library informs an EXE that its being used to service objects through a command-
line flag -Embedding. This flag is simply appended to the path entry for this local server in the registration
database, so if you register your EXE with flags yourself, look for this at the end of the command line.
Checking this flag is priority #1 in EKOALA's initialization. If this flag is not present, then the end user
attempted to run the application stand-alone from the shell. Since this application doesn't live for any purpose
other than to service objects, it fails to load if -Embedding is not present.

The next few steps in CAppVars::FInit are the same as those required of any OLE 2.0 application:
CoBuildVersion and CoInitialize since we are using component object library APIs. After such initialization
we create a window for this task that remains hidden; in all cases where -Embedding is on the command
line, the server window should remain hidden until explicitly asked to show itself. For this

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 53

demonstration, the EKOALA program has no need to ever show its window since it has no user interface. For
compound document servers, they may be asked to provide an updated rendering of an object without ever
showing that object to the end user. Compound document objects implement the IOleObject interface
whose ::DoVerb is told when to actually show the window, if it ever becomes necessary.

If we get past the initialization stage we must then create the class factory object and pass it to
CoRegisterClassObject in the same way we are very accustomed to calling the Windows API RegisterClass.
With RegisterClass you create a WNDCLASS structure, fill in the lpfnWndProc field with a pointer to your
window's message procedure, and pass a pointer to that WNDCLASS to RegisterClass. Your window
procedure is not actually called until you, or someone else, creates a window of your registered class. With
CoRegisterClassObject you create a class factory object where that object has a function table for the
IClassFactory interface that you must fill with pointers to your IClassFactory implementation. You then pass
a pointer to the object to CoRegisterClassObject, but the interface functions like ::CreateInstance are not
called until you or someone else creates a component object of your class. 1

Creating the class factory object is just the matter of allocating the object's data structure and function
table, which is conveniently handled in C++ with the new operator:

//Return our IClassFactory for Koala objects
m_pIClassFactory=new CKoalaClassFactory();

if (NULL==m_pIClassFactory)
 return FALSE;

//Since we hold on to this, we should AddRef it
m_pIClassFactory->AddRef();

The additional ::AddRef insures that the application controls the lifetime of the class factory because the
CKoalaClassFactory constructor initializes its reference count to zero. Since the application makes the first
AddRef, it will have to make the last ::Release that allows the class factory to destroy itself. Since we have
this extra AddRef on the class factory we do not need to include it as part of the server's object count.

Once we have created the class factory we have to tell the component object library about it using
CoRegisterClassObject. We have to be the one that calls this function because we have yet to yield from
this task in our message loop, so the component object library does not have a chance to call us as happens in
a DLL:

hr=CoRegisterClassObject(CLSID_Koala, (LPUNKNOWN)m_pIClassFactory
 , CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE, &m_dwRegCO);

if (FAILED(hr))
 return FALSE; //Registration failed.

[Class factory successfully registered]

CoRegisterClassObject takes the CLSID of the factory we're providing, a pointer to the class factory, the
context in which we're running (always CLSCTX_LOCAL_SERVER), a flag indicating how this class factory
can be used, and a pointer to a DWORD in which CoRegisterClassObject returns a registration key we'll need
later during shutdown.

NOTE: If your EXE is the server for multiple classes, you must call CoRegisterClassObject for each
supported CLSID just like you would RegisterClass for each window class you support. The component
object library will launch you when any user requests any CLSID you support, but cannot tell you
through WinMain which CLSID that was. So you must register a class factory for each CLSID you
placed in the registration database.
The fourth parameter to CoRegisterClassObject specifies how many objects can be created using this
class factory: REGCLS_SINGLEUSE or REGCLS_MULTIPLEUSE. If you specify single use, then
OLE will launch another instance of your application each time a user calls CoGetClassObject. If you
specify multiple-use, then one instance of the application is used to service any number of objects. In the
compound document scenario, this is equivalent to having a single-document (SDI) or multiple-document
(MDI) applications since SDI applications can only edit one object at a time whereas MDI can edit more.
To prove this to yourself, run two instance of the OBJUSER program, specify "Use EXE Object" from

both Koala Object menus, and use one of the Create commands from the menu. Since EKOALA registers

1In reality, calling CoRegisterClassObject immediately generates a number of calls to your IClassFactory::AddRef since the component
object library is holding on to your IClassFactory pointer. So your object is called before ever creating an object unlike your window
procedure.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 54 :

itself as multiple-use, only one instance will be loaded to service both objects. Now change EKOALA to
register as single-use and run two OBJUSERs again, using the same commands. This time two instances of
EKOALA will be run, each only servicing one object.
Provide an Unloading Mechanism
Since the mechanisms we use to expose a class factory from both kinds of servers differ, the mechanisms for
indicating when the server is no longer needed also differs. An unloading mechanism is not a consideration
for normal Windows applications because they are almost always controlled by the user. OLE 2.0 allows
DLLs and EXEs that serve objects to be controlled by another piece of component user code. Since there is
no end-user involve to close applications, there must be a programmatic technique to accomplish the same
ends.

The bottom line is that any server is no longer needed when there are no lock counts from
IClassFactory::LockServer and there are no objects currently being serviced. However, since the EXE server
has a window it must destroy its main window, cause a call to PostQuitMessage, exit the message loop, and
quit the application. Since DLLs have no idea of "quitting" (that is, no message loop to exit) they instead
mark themselves as "unloadable."
DLL Server

Again, let's start with the DLL since the mechanism is trivial. As we have seen, the DLL server increments
and decrements a global1 lock count in IClassFactory::LockServer and increments the object count in
IClassFactory::CreateInstance. When any Koala object is destroyed we want to decrement the object count
which is handled in the ObjectDestroyed function we provided to the Koala object:

void FAR PASCAL ObjectDestroyed(void)
 {
 g_cObj--;
 return;
 }

The DLL never tells anyone to unload it; instead, the component object model will periodically ask it "can
you unload now?" by calling an export DllCanUnloadNow with the following form:

STDAPI DllCanUnloadNow(void)
 {
 SCODE sc;

 //Our answer is whether there are any object or locks
 sc=(0L==g_cObj && 0==g_cLock) ? S_OK : S_FALSE;
 return ResultFromScode(sc);
 }

The implementation shown above will answer "yes" when both object and lock counts are zero and "no"
otherwise. If this function answers yes, then the libraries will internally call CoFreeLibrary to reverse the call
it made to CoLoadLibrary from within CoGetClassObject.

NOTE: The function that should call DllCanUnloadNow is CoFreeUnusedLibraries which, as we've
seen, is called periodically by an object user. However, the OLE 2.0 implementation of
CoFreeUnusedLibraries does nothing, so you will never see a call to DllCanUnloadNow. However,
CoFreeUnusedLibraries will be implemented in the near future, so implement DllCanUnloadNow as if it
were always called anyway.
Also note that there has been no mention of class factory reference counts in any other this because such
reference counts are not used to keep the DLL in memory. Object users wishing to hold a class factory
must also call your ::LockServer (as described in "Implementing an Object User" above). While a
reference count could easily prevent a DLL from unloading, it's impossible to do so in an EXE which the
discussion below illustrates.
Congratulations! You're a mother! After implementing DllCanUnloadNow you now have a complete
DLL object server into which you can put more and more complex objects and interfaces, continuing to
use the same mechanisms. The framework for DLL-based objects developed here will be used for more
complex DLL objects in this book. I certainly hope you will be able to use it for incredible objects of
your own.

1I confess!! I used global variables! I normally try hard to avoid any use of global variables like many readers do. In this case having a
few globals simplified both DLL and EXE implementation. You might also see me declare global instance handle when appropriate since
instance handles are really application-wide and might be needed deep in a long chaing of function calls. In any case, global variables in
this and other sample apps are prefixed with g_ for clear identification. Please forgive my transgressions!

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 55

EXE Server

Instead of being asked when you can be unloaded as in the DLL case, an EXE server must initiate shutdown
itself when it detects the following conditions: there are no objects being serviced and there is a zero lock
count. This detection complicates EXE servers especially when we deal with compound documents because
we throw in another condition regarding the end user and what they might have done with the application (see
"Preview Note: I Don't Have the Section Yet" in Chapter 10). But for now, we need to detect only when
these two conditions are met and start shutdown by posting a WM_CLOSE to the main window. The two
places where we must add a check is in IClassFactory::LockServer and in the ObjectDestroyed function that
the Koala object will call when it's freed:

STDMETHODIMP CKoalaClassFactory::LockServer(BOOL fLock)
 {
 if (fLock)
 g_cLock++;
 else
 {
 g_cLock--;

 //No more objects and no locks, shut the app down.
 if (0==g_cObj && 0==g_cLock && IsWindow(g_hWnd))
 PostMessage(g_hWnd, WM_CLOSE, 0, 0L);
 }

 return NOERROR;
 }

void FAR PASCAL ObjectDestroyed(void)
 {
 g_cObj--;

 //No more objects and no locks, shut the app down.
 if (0==g_cObj && 0==g_cLock && IsWindow(g_hWnd))
 PostMessage(g_hWnd, WM_CLOSE, 0, 0L);

 return;
 }

To facilitate message posting the I sinned again in EKOALA by storing its window handle as a global
variable. This slight bit of "cheating" as you may consider it works clean and easy without having to pass the
window handle around. Such a global guarantees that any code in this application could start a shutdown
with the same mechanism. We could also use PostAppMessage but that requires some changes to the
application's message loop which wouldn't be any cleaner.

By posting WM_CLOSE I am starting shutdown of EKOALA exactly as if an end-user closed it from the
system menu. In the process of shutting down, EKOALA destroys the main window (DefWindowProc's
handling of WM_CLOSE), exits WinMain (by calling PostQuitMessage in WM_DESTROY), and ends up in
CAppVars::~CAppVars. This destructor first calls CoRevokeClassObject that removes the class factory you
passed to CoRegisterClassObject identified by the DWORD key that CoRegisterClassObject returned. If
you registered multiple class factories for different CLSIDs you must revoke each one here.
CoRevokeClassObject will ::Release any reference counts that the component object library was holding on
the class factory. Furthermore, since we called ::AddRef ourself before CoRegisterClassObject (remember
that, long ago?), we must now match it with a ::Release. This will reduce the class factory's reference count
to zero and free that object. Finally, since we called CoInitialize we need to remember to call CoUninitialize.

CoRevokeClassObject is the reason why a class factory's reference count cannot be used by a component
user to keep a server, DLL or EXE, in memory. If a positive reference count could keep the class factory in
memory, then we could not shut the application down until the reference count was zero and the class factory
was destroyed. But the reference count will never reach zero unless we call CoRevokeClassObject. But we
only call CoRevokeClassObject when we shut down, after our window is gone, we've exited the message
loop, and we're on the non-stop express to oblivion. So we can't revoke until we're shutting down and we
can't shut down until we revoke. Aaaugh!. Fourth down and 100 yards to go...so we punt: a positive
reference count on a class factory cannot be used to keep a server in memory. A component user must rely on
::LockServer to prevent shutdown, not the class factory reference count. Our saving grace is that this is the
only special case of reference counting in all of OLE 2.0.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 56 :

Object Handlers (Default Handler)
An object handler is a lightweight DLL server used to provide a partial implementation of an full
EXE object, thereby reducing the need to launch the EXE to service that object. Since DLL objects
generally load faster and need no parameter marshaling, use of handlers generally increases overall
performance. Object handlers used in conjunction with a compound document provide for data
transfer and object rendering (directly to screen or printer) but not for editing, making handlers ideal
for licensing for redistribution with document, much like TrueType fonts in Windows 3.1 can be
saved with a document given the proper license. Chapter 11 will examine Object Handlers for
specific use with compound documents.
If an object user calls CoGetClassObject with CLSCTX_INPROC_HANDLER |
CLSCTX_LOCAL_SERVER then the handler is loaded first and all calls to the object's interfaces
are sent to the DLL. If an full DLL object exists as well, OLE will use that DLL first if the
CLSCTX_INPROC_SERVER flag is specified.
When a handler discovers that it cannot provide the requested function for the caller, it can delegate
to the full object implementation in the EXE. In order to delegate calls the handler has to first
CoCreateInstance on the same CLSID as itself, specifying only CLSCTX_LOCAL_SERVER that
forces OLE to launch the application. In any case, CoCreateInstance returns the pointer to the object
of the same class in the EXE through which the handler can interact with the full implementation.
When the handler's object is ::Released for the final time, it calls ::Release on the EXE object it
created.
This is not, of course, without restrictions: the EXE object can only support standard interfaces with
built-in marshaling support there is limited communication between the handler and the application.
Furthermore, the handler must insure that data is synchronized between itself and the application.
Most often, however, a handler exists to provide speedy rendering of specific data formats and
delegates requests for more esoteric formats to the application.
OLE 2.0 provides a default handler OLE2.DLL that is always used in lieu of a specific handler for a
class. We'll explore various aspects of the default handler over the next few chapters with a more
complete list of its functionality in Chapter 11. An object handler for compound document objects
can create a default handler object to which it delegates unimplemented calls, and the default handler
takes care of launching an application when necessary. In the compound document scenario an
object handler should never directly instantiate it's own server: let OLE2.DLL do that.
Finally, the only different between DLL object handlers and DLL object servers is their intended
uses and expected performance. Technically and structurally, the handler is identical to a DLL
server. All discussion in this chapter dealing with DLL servers applies equally to DLL handlers.
The real significant differences lie in how the two are used and how they should be designed, which
are topics for Chapters 10 and 11.

Schmoo's Polyline as a DLL Object
The Koala object that supports the IPersist interface pretty boring and, well, useless. To demonstrate an
object much more useful and exciting the CHAP04\POLYLINE directory in the sample code contains an
implementation of Schmoo's CPolyline class as a Windows Object in a DLL. The source code for
POLYLINE.DLL is a little too long to show here, however. This implementation shows that a much more
complicated object such as Polyline can fit into exactly the same housing (DLL or EXE) as a simple object
like Koala.

The member functions of the original CPolyline from Chapter 2 are converted into a custom interface
IPolyline4 defined in INC\IPOLY4.H (the '4' in the names are for Chapter 4 since we'll be making
modifications to the interface through this book)and shown Listing 4-7. Note that since all interface functions
should return HRESULT wherever possible, some return values in the original CPolyline are converted into
out-parameters in the interface. IPOLY4.H also defines an interface IPolylineAdviseSink4 (which we'll also
modify as time goes on) through which a Schmoo document receives notifications from the Polyline. This
replaces the CPolylineAdviseSink class that Schmoo used before.

IPOLY4.H

/*

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 57

 * IPOLY4.H
 * Chapter 4 Polyline Object
 *
 * Definition of an IPolyline interface for a Polyline object used
 * in the Schmoo implementation. This interface is custom and is
 * only supported from DLL-based objects.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#ifndef _IPOLY4_H_
#define _IPOLY4_H_

//Versioning.
#define VERSIONMAJOR 2
#define VERSIONMINOR 0
#define VERSIONCURRENT 0x00020000

#define CPOLYLINEPOINTS 20

//Version 2.0 Polyline Structure
typedef struct __far tagPOLYLINEDATA
 {
 WORD wVerMaj; //Major version number.
 WORD wVerMin; //Minor version number.
 WORD cPoints; //Number of points.
 BOOL fReserved; //Previously fDrawEntire, obsoleted
 RECT rc; //Rectangle of this figure (client)
 POINT rgpt[CPOLYLINEPOINTS]; //Array of points on 0-32767 grid.

 //Version 2.0 additions
 COLORREF rgbBackground; //Background color

Listing 4-6: IPolyline4 and IPolylineAdviseSink4 custom interfaces.

 COLORREF rgbLine; //Line color
 int iLineStyle; //Line style
 } POLYLINEDATA, *PPOLYLINEDATA, FAR *LPPOLYLINEDATA;

#define CBPOLYLINEDATA sizeof(POLYLINEDATA)

//We use the OLE 2.0 macro to define a new interface
#undef INTERFACE
#define INTERFACE IPolylineAdviseSink4

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 58 :

/*
 * When someone initializes a polyline and is interested in receiving
 * notifications on events, then they provide one of these objects.
 */

DECLARE_INTERFACE_(IPolylineAdviseSink4, IUnknown)
 {
 //IUnknown members
 STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID FAR *) PURE;
 STDMETHOD_(ULONG,AddRef) (THIS) PURE;
 STDMETHOD_(ULONG,Release) (THIS) PURE;

 //Advise members.
 STDMETHOD_(void,OnPointChange) (THIS) PURE;
 STDMETHOD_(void,OnSizeChange) (THIS) PURE;
 STDMETHOD_(void,OnDataChange) (THIS) PURE;
 STDMETHOD_(void,OnColorChange) (THIS) PURE;
 STDMETHOD_(void,OnLineStyleChange) (THIS) PURE;
 };

typedef IPolylineAdviseSink4 FAR * LPPOLYLINEADVISESINK;

//We use the OLE 2.0 macro to define a new interface
#undef INTERFACE
#define INTERFACE IPolyline4

DECLARE_INTERFACE_(IPolyline4, IUnknown)
 {
 //IUnknown members
 STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID FAR *) PURE;
 STDMETHOD_(ULONG,AddRef) (THIS) PURE;
 STDMETHOD_(ULONG,Release) (THIS) PURE;

 //IPolyline members

 //File-related members:
 STDMETHOD(ReadFromFile) (THIS_ LPSTR) PURE;
 STDMETHOD(WriteToFile) (THIS_ LPSTR) PURE;

 //Data transfer members:
 STDMETHOD(DataSet) (THIS_ LPPOLYLINEDATA, BOOL, BOOL) PURE;
 STDMETHOD(DataGet) (THIS_ LPPOLYLINEDATA) PURE;
 STDMETHOD(DataSetMem) (THIS_ HGLOBAL, BOOL, BOOL, BOOL) PURE;
 STDMETHOD(DataGetMem) (THIS_ HGLOBAL FAR *) PURE;
 STDMETHOD(RenderBitmap) (THIS_ HBITMAP FAR *) PURE;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 59

 STDMETHOD(RenderMetafile) (THIS_ HMETAFILE FAR *) PURE;
 STDMETHOD(RenderMetafilePict) (THIS_ HGLOBAL FAR *) PURE;

 //Manipulation members:
 STDMETHOD(Init) (THIS_ HWND, LPRECT, DWORD, UINT) PURE;
 STDMETHOD(New) (THIS) PURE;
 STDMETHOD(Undo) (THIS) PURE;
 STDMETHOD(Window) (THIS_ HWND FAR *) PURE;

 STDMETHOD(SetAdvise) (THIS_ LPPOLYLINEADVISESINK) PURE;
 STDMETHOD(GetAdvise) (THIS_ LPPOLYLINEADVISESINK FAR *) PURE;

 STDMETHOD(RectGet) (THIS_ LPRECT) PURE;
 STDMETHOD(SizeGet) (THIS_ LPRECT) PURE;
 STDMETHOD(RectSet) (THIS_ LPRECT, BOOL) PURE;
 STDMETHOD(SizeSet) (THIS_ LPRECT, BOOL) PURE;

 STDMETHOD(ColorSet) (THIS_ UINT, COLORREF, COLORREF FAR *) PURE;
 STDMETHOD(ColorGet) (THIS_ UINT, COLORREF FAR *) PURE;

 STDMETHOD(LineStyleSet) (THIS_ UINT, UINT FAR *) PURE;
 STDMETHOD(LineStyleGet) (THIS_ UINT FAR *) PURE;
 };

typedef IPolyline4 FAR * LPPOLYLINE;

//Error values for data transfer functions, in SCODEs instead of #defines
#define POLYLINE_E_INVALIDPOINTER MAKE_SCODE(SEVERITY_ERROR,
FACILITY_ITF, 1)
#define POLYLINE_E_READFAILURE MAKE_SCODE(SEVERITY_ERROR,
FACILITY_ITF, 2)
#define POLYLINE_E_WRITEFAILURE MAKE_SCODE(SEVERITY_ERROR,
FACILITY_ITF, 3)

//Color indices for color member functions
#define POLYLINECOLOR_BACKGROUND 0
#define POLYLINECOLOR_LINE 1

#endif //_IPOLY4_H_

The core implementation of the Polyline has not changed significantly. The DLLPOLY.CPP file is only
a slight modification from the DKOALA.CPP file: a few name changes, a class registered in LibMain, and
DLL instance handle passed to the CPolyline constructor. Oh yes, CPolyline still exists but is now more like
the CKoala object in the previous examples. The member functions of the former CPolyline of Chapter 2
have been moved to the interface implementation CImpIPolyline.

As we move forward in this book we'll incrementally replace specific members of IPolyline4 with those
of another interface. In the next chapter, for example, we'll remove the two file-related functions from

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 60 :

IPolyline5 replacing them with an IPersistStorage interface to the object. In Chapter 6 we'll replace the data
transfer and graphics rendering functions in IPolyline6 with the IDataObject interface. In Chapter 10 we'll
replace the advise and size manipulation functions with IOleObject, followed by replacement of ::Window
with IOleInPlaceObject in Chapter 15, and finally eliminating all others using IDispatch in Chapter 19.

The version of Schmoo that uses the component Polyline object, Component Schmoo, is provided in
CHAP04\COSCHMOO and only required a few of modifications. When you run Component Schmoo,
however, you will notice absolutely no changes in the user interface or in any behavior. Component Schmoo
just changed from being the user of a local C++ object, CPolyline, to a component user of the Polyline
Windows object through the IPolyline4 interface.

You will notice that the component Polyline object does not concern itself with reading and writing old
file formats: it only bothers with it's current format. This is because as we move forward into the next
chapters this DLL will be more concerned with compound files that live in storage objects much more than
with old traditional MS-DOS files. Since it's goal is to service embedded objects as an in-process DLL
server, it has no concept of file versions. You can still use the self-contained Schmoo application to convert
files.

To demonstrate the self-contained Schmoo as a server of Polyline objects, since the polyline is not an
application in itself, we'll also develop Schmoo in parallel with the component Polyline object. Instead of
restructuring Schmoo internals, we'll implement the interfaces on top of the existing CPolyline in order to
expose CPolyline's functions externally. In Component Schmoo, we replace the custom interface with
standard interfaces, allowing the object to be usable from more than one application.

Object Reusability
So what about inheritance?Windows Objects themselves and the classes they identify through CLSIDs have
no notion of implementation inheritance whatsoever, that is, one Windows Object does no inherit the
implementation of another Windows Object. But Windows Object are still reusable through two mechanisms
called containment and aggregation. These mechanisms has several significant benefits over inheritance,
which is why the Component Object Model has significant benefits over other object models that rely heavily
on inheritance.

In the Component Object Model, inheritance is simply considered a tool useful for implementing classes
in C++ as well as in defining interfaces. In your implementation of an object, you can either use multiple
inheritance from all the interfaces you support, or you can contain implementations of each interface it
supports where each interface implementation inherits a single interface. That's really what interface is for:
to help the implementor of an object but not the user of an object. Inheritance greatly enhances programmer
productivity, but does the user really care how the object was implemented? The answer is definitely NO
since object users are supposed to be entirely ignorant of the object's implementation, especially when the
implementation exists in other pieces of code that you did not implement or those for which you don't have
the source, such as Windows itself.

The single most significant problem of inheritance is that a derived class invariably must know about the
implementation of the base class. But this is crazy! The derived class really is, after all, just another user of
that base class and should therefore not be knowledgeable about the base class implementation.

Consider subclassing a Windows edit control, something that many of us Windows programmers have
tried to do with a great deal of pain. As you have probably experienced you have to know exactly what
messages you can and cannot trap and override. You must also know when to call the default edit control's
window procedure: do you call it before you do your own processing on the message? After? Do you call it
at all? You absolutely must have knowledge about how the edit control is implemented if you have any
chance of not breaking its behavior through your subclassing. This same problem manifests itself even with a
simple function like DefWindowProc, which has led Microsoft to publishing at least part of the
DefWindowProc source code in the Windows 3.0 and 3.1 Software Development Kits. All because you have
two pieces of code, one that doesn't know anything about the other, trying to operate on the same data at the
same time. A fragile relationship at best, just waiting for a fiery divorce.

This example brought up another serious problem with inheritance: two pieces of code working on the
instance of an object. If I have a base class B and a derived class D that inherits from B, than an instantiation
of class D is only one data structure in memory. If B contains virtual functions that D does not override, or if
the implementation of D explicitly calls a member function in B (that is using B::<member function>), then
we again have two pieces of code working on the same memory. But class B does not know the expected
behavior of class D–so how on earth can D force the correct behavior of its objects? The answer is that D
must know what B is going to do on that object such that it knows when to override a virtual function in B

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 61

and when exactly to explicitly call B's functions. This is exactly the same problem as trying to figure out
when to call DefWindowProc for any given message: we've just replace the word 'message' with 'virtual
function.' In any case, since B cannot know about the implementation of D, then D must know about the
implementation of B which causes D to violate it's status as a user of B.

Systems built on inheritance have the key problem that they must ship all their source code in order to be
usable. Take a look at application frameworks like Microsoft's Foundation Classes–source is shipped so you
know how to inherit from any given class and can duplicate behavior as appropriate. Sure, inheritance works
well to build large complex systems because it's a much better way to manage source code than a large
stockpile of sample source files. It certainly works well when you control an have access to all the source
code for all classes. It certainly helps me to develop the sample applications in this book. But it does not
work for reusing object implemented in the operating system itself where source is either not available or you
did not originally implement the object yourself.

The Component Object Model avoid all these problems but retains reusability through its mechanisms of
containment and aggregation, which we are finally in a position to explain in detail. Both mechanisms
achieve reusability literally by using, instead of inheriting, the implementation of another object. The object
we're using remains entirely self-contained and operates on its own instance of data. Our own object, which
is called the aggregate, works on its own instance of data and calls the other object as necessary to perform
specific functions where we can pass it the data on which to operate.

Let's say I have an object called Animal that knows only of itself and exists as an atomic entity (like the
Koala object). I can illustrate this object as a cube with circular jacks for each interface: IUnknown and
IAnimal (with members like ::Eat, ::Sleep, and ::Procreate). Again by convention IUnknown is always shown
on top with all other interfaces shown to the side:

A user of this object with a pointer to either interface can ::QueryInterface to get a pointer to the other. The
implementation of IAnimal knows about the object's IUnknown and vice-versa. Now I want to create a more

complicated Koala object that will expose interfaces IUnknown, IAnimal, and IMarsupial (maybe with
members like ::CarryYoungInPouch and ::LiveInAustralia), with a more complicated picture: 1

When I implement Koala, I know that Animal exists and I wish to reuse Animal's implementation. I can use
Animal and its IAnimal in two ways, neither of which changes how the external world sees Koala:

1. Containment: Koala completely contains an Animal object and implements it's own of IAnimal to
expose externally. This makes Koala a user of Animal and Animal need not care.
2. Aggregation: Koala exposes Animal's IAnimal interface directly as Koala's IAnimal. This
requires that Animal knows that it's interface is exposed for something other than itself such that
QueryInterface, AddRef, and Release behave as a user expects.
Case 1: Object Containment
Complete containment of Animal is necessary when I need to change some aspect about my implementation
of IAnimal. Since all external calls to that interface will enter Koala first, Koala can override specific
functions or simply pass that call to Animal's implementation. The internal structure of Koala will appear
like:

In this case Animal always operates on its own data unless Koala explicitly passes other data to it (which is

also true in aggregation). In other words, by default the two objects work on different data and only by
conscious design of an interface would the two be able to communicate. This is different from inheritance

where working on the same data is the default and it takes conscious effort to create separate data instances.

1Instinct tells you that IMarsupial should inherit from IAnimal because a marsupial is just another kind of animal. The Windows Object
notion of interfaces means that through a pointer to IMarsupial you deal with the object as a marsupial but not generally as anything else. If
you want to treat it like any other animal, call IMarsupial::QueryInterface(IID_IAnimal) for the appropriate interface. As a real example,
consider compound document objects: they are all treated through IOleObject whether linked or embedded. A linked object is a further
refinement of an embedded object, so you might expect that an interface like IOleLink for linked objects would inherit from IOleObject.
But it doesn't: you QueryInterface through IOleObject for IOleLink. QueryInterface is the mechanism for getting at more functions on the
same object.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 62 :

To build this sort of structure, Koala calls CoCreateInstance on CLSID_Animal when Koala itself is
created, asking for IID_IAnimal. Koala maintains this IAnimal pointer until the Koala object is destroyed at
which time it calls IAnimal::Release to free the Animal object. Whenever Koala's IAnimal implementation
wants to reuse Animal's IAnimal implementation, Koala just calls the appropriate Animal functions.

This technique is the simplest way to reuse another's implementation of an interface. However, you do
not always care to override any functions in such an interface, wishing only to pass every call through to the
object you're using. You could, of course, implement stubs for every IAnimal function that simply calls the
contained object, but we would rather just expose that interface directly and eliminate any need for such
stubs. That technique is aggregation.
Case 2: Object Aggregation
Aggregation on Animal is useful when Koala does not wish to change any aspect about how it appears
through the IAnimal interface, that is, Koala as no need to just implement a bunch of Animal stubs that only
delegate to a contained Animal object. Therefore Koala wants to expose the IAnimal interface of the Animal
object directly, turning it into Koala's IAnimal. This yields an internal structure like:

Here's the problem. Since Animal's IAnimal is exposed directly, users of Koala will expect that
IAnimal::QueryInterface(IID_IMarsupial) will return a pointer to Koala's IMarsupial, and that

IAnimal::QueryInterface(IID_IUnknown) will return a pointer to Koala's IUnknown. But Animal was not
written to know anything about IMarsupial, let alone know anything about the Koala object! How can it

know the identify of the outer object?
The answer is that when Koala creates Animal, Koala passes its IUnknown pointer to the Animal class

factory ::CreateInstance as the punkOuter parameter. In this fashion Koala identifies itself as the controlling
unknown of the aggregate. Furthermore, Koala must always ask for Animal's IUnknown when creating
Animal as part of an aggregate. Note that an object may not support aggregation in which case it
fails ::CreateInstance when a non-NULL punkOuter is specified.

This punkOuter parameter in ::CreateInstance must be passed from the class factory to the object and
made available to all interface implementations of IUnknown members. Let's look again at some of the code
from the Koala object implementation again (Listing 4-3) renamed for Animal:

STDMETHODIMP CAnimalClassFactory(LPUNKNOWN punkOuter, ...)
 {
 LPUNKNOWN pObj;
 ...
 pObj=new CAnimal(punkOuter, ...); //Create the object

 ...
 pObj->FInit(); //Initialize object
 ...
 }

CAnimal::CAnimal(LPUNKNOWN punkOuter, ...)
 {
 ...
 m_punkOuter=punkOuter; //Save the controlling unknown
 ...
 }

BOOL CAnimal::FInit(void)
 {
 LPUNKNOWN pIUnknown=(LPUNKNOWN)this;

 if (NULL!=m_punkOuter)
 pIUnknown=m_punkOuter;

 m_pIAnimal=new CImpIAnimal(this, pIUnknown);

 return (NULL!=m_pIAnimal);
 }

In this manner the Animal object knows about the controlling unknown punkOuter and save it within its own
structure. When Animal goes to create its interface implementations, it plays a nasty trick on them. If there
is no real controlling unknown, Animal passes its own IUnknown, the one knows all the interfaces
implemented in Animal, as the controlling unknown to the interface. The interface, in turn, blindly delegates

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 63

all IUnknown member calls to whatever controlling unknown it has (besides doing interface reference
counting for debugging purposes):

CImpIAnimal::CImpIAnimal(LPVOID pObj, LPUNKNOWN punkOuter)
 {
 ...
 m_punkOuter=punkOuter;
 ...
 }

STDMETHODIMP CImpIPersist::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 return m_punkOuter->QueryInterface(riid, ppv);
 }

STDMETHODIMP_(ULONG) CImpIPersist::AddRef(void)
 {
 ++m_cRef;
 return m_punkOuter->AddRef();
 }

STDMETHODIMP_(ULONG) CImpIPersist::Release(void)
 {
 --m_cRef;
 return m_punkOuter->Release();
 }

So let's say there is no aggregation; the m_punkOuter to which CImpIAnimal delegates is the IUnknown
implemented in CAnimal. This IUnknown implementation will return pointers for IUnknown and IPersist:

STDMETHODIMP CKoala::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 *ppv=NULL;

 if (IsEqualIID(riid, IID_IUnknown))
 *ppv=(LPVOID)this;

 if (IsEqualIID(riid, IID_IAnimal))
 *ppv=(LPVOID)m_pIAnimal;

 if (NULL!=*ppv)
 {
 ((LPUNKNOWN)*ppv)->AddRef();
 return NOERROR;
 }
 return ResultFromScode(E_NOINTERFACE);
 }

If there is an aggregation, m_punkOuter points to the controlling unknown (the interface does not know the
difference) and so calls to it initially bypass the IUnknown of Animal. This controlling unknown determines
exactly which pointer is returned for which interface by executing the following steps:
1. If the requested interface is one implemented by the aggregating object and exposed externally,
the controlling unknown returns a pointer to the aggregate's implementation.
2. If the requested interface is implemented within a contained object, delegate the call to that
contained object's IUnknown.

The ::QueryInterface of an aggregate's controlling unknown, such as what Koala would implement,
would therefore appear as:

STDMETHODIMP CKoala::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 *ppv=NULL;

 if (IsEqualIID(riid, IID_IUnknown))
 *ppv=(LPVOID)this;

 if (IsEqualIID(riid, IID_IMarsupial))
 *ppv=(LPVOID)m_pIMarsupial;

 if (NULL!=*ppv)
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 64 :

 ((LPUNKNOWN)*ppv)->AddRef();
 return NOERROR;
 }
 else
 return m_pIUnknownAnimal->QueryInterface(riid, ppv);

 return ResultFromScode(E_NOINTERFACE);
 }

where m_pIUnknownAnimal is the IUnknown pointer we requested when creating the Animal object. The
IUnknown implementation on an object like CAnimal above is always the last stop for
a ::QueryInterface, ::AddRef, or ::Release call. It never worries about aggregation in itself because it has to
be the controlling unknown for its own object. Only if the Animal object itself contained more primitive
objects (like a TangibleThing) would it do any further delegation, but in no way will it pass any request to a
higher unknown.

NOTE: Aggregation and delegating IUnknown calls applies equally to ::AddRef and ::Release
although ::QueryInterface is the most interesting case. Since the user is expecting to affect the reference
count of the entire aggregate object through whatever interface, all interfaces in an aggregable object
must pass ::AddRef and ::Release calls up to the controlling unknown. The unknown of the contained
object, however, will not see these reference counts since that contained object is nested within the
lifetime of the aggregate.

Summary
A first requirement of all OLE 2.0 applications is that they use a message queue of size 96 and provide for
initializing the OLE 2.0 libraries if, in fact, the application can run against the version of those libraries that
currently exist on the machine. Checking versions is accomplished through the CoBuildVersion and
OleBuildVersion functions whereas initialization occurs through CoInitialize and OleInitialize. On shutdown
an application must also call CoUninitialize or OleUninitialize to reverse the corresponding Initialize call.
These requirements are presented in this chapter because all later samples must comply with them.

Part of library initialization involves defining a task allocator object, one that implements the IMalloc
interface, that is used for all task memory allocations. An OLE 2.0 application can either implement its own
or use an OLE 2.0-provided allocator that works on the technique of multiple-local heaps. OLE 2.0 always
implements a similar shared allocator that can provide memory sharable between applications. While
applications can change the task allocator they cannot change the shared allocator. While the application is
running, any other piece of code (such as the OLE 2.0 libraries themselves) may call CoGetMalloc to obtain a
pointer to either the task or shared allocator objects.

The Ultimate Question presented in Chapter 3 asked how you obtain a pointer given knowledge and the
identification of a specific Windows Object. This chapter deals with the specific case where you identify a
Windows Object given a CLSID and use the function CoCreateInstance to instantiate an object of that class.
Such an object is called a Component Object and the application using it is called a Component User.
CoCreateInstance internally uses CoGetClassObject which obtains a class factory object (IClassFactory) for
the CLSID and call IClassFactory::CreateInstance to perform the actual instantiation. What you do with the
object once you have an interface pointer on it is your own business, although there are a few considerations
when you release the object, such as calling CoFreeUnusedLibraries to purge unused DLLs from memory.

Implementing Component Objects that can be loaded and called by functions like CoCreateInstance and
CoGetClassObject have different structural requirements depending on whether the object lives in a DLL or
EXE. A DLL exports a function called DllGetClassObject that provides the API through which
CoGetClassObject obtains a pointer to the DLL's class factory for a given CLSID. EXEs instead must pass a
pointer to their class factory objects to the CoRegisterClassObject API for each supported CLSID. The two
module types also differ in their shutdown conditions. Whereas the component object library asks a DLL if
that DLL can be unloaded, and EXE must initiate its own shutdown when the proper conditions are met, that
is, destroy its main window and exit its message loop. As examples, this chapter implements an object called
Koala that supports the IPersist interface in both a DLL and EXE, then separates the Polyline object of the
sample Schmoo application into a component object and shows a modification of Schmoo, called Component
Schmoo, that uses the component Polyline object.

Object reusability in OLE 2.0 is achieved through mechanisms called Containment and Aggregation, not
inheritance. The inheritance mechanism works well for source code management but generally requires that
you have the source code available for any classes from which you inherit. Because of source availability and
a host of other problems, OLE 2.0 works on mechanisms other than inheritance that provide the same

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 65

reusability of code, but avoids the problems with traditional techniques. There is, however, some impact on
the implementation of an object that wants to allow itself to be reusable via containment and aggregation.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

	Chapter 4
	Component Windows Objects (The Component Object Model)
	Where the Wild Things Are
	The New Application for Windows Objects
	Enlarge the Message Queue
	Verify The Library Build Version
	Call CoInitialize or OleInitialize
	Call CoUninitialize or OleUninitialize

	Memory Management and Allocator Objects
	Component Objects from Class IDs: A Component User
	#include <initguid.h> and Precompiled Headers
	Instantiate a Component Object
	Manage the Object and Call CoFreeUnusedLibraries

	Implementing a Component Object and Server
	Register CLSIDs
	Implement the Class Factory
	Expose the Class Factory
	Provide an Unloading Mechanism

	Schmoo's Polyline as a DLL Object
	Object Reusability
	Case 1: Object Containment
	Case 2: Object Aggregation

	Summary

